Trigo!

Geometry Level 3

If tan α 2 = k \tan\dfrac{\alpha}{2}= k ,

1 2 sin 2 ( α 2 ) 1 + sin α = ? \large{\dfrac{1-2\sin^2 \left(\dfrac{\alpha}{2}\right)}{1+\sin\alpha}}=?

1 k 1 + k \dfrac{1-k}{1+k} 1 + k 1 k \dfrac{1+k}{1-k} k 1 1 + k \dfrac{k-1}{1+k} k + 1 k 1 \dfrac{k+1}{k-1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since sin ( α ) = 2 sin ( α 2 ) cos ( α 2 ) \sin(\alpha) = 2\sin\left(\dfrac{\alpha}{2}\right)\cos\left(\dfrac{\alpha}{2}\right) , if we divide both the numerator and denominator of the given expression by cos 2 ( α 2 ) \cos^{2}\left(\dfrac{\alpha}{2}\right) the expression becomes

sec 2 ( α 2 ) 2 tan 2 ( α 2 ) sec 2 ( α 2 ) + 2 tan ( α 2 ) = 1 tan 2 ( α 2 ) tan 2 ( α 2 ) + 2 tan ( α 2 ) + 1 \dfrac{\sec^{2}\left(\dfrac{\alpha}{2}\right) - 2\tan^{2}\left(\dfrac{\alpha}{2}\right)}{\sec^{2}\left(\dfrac{\alpha}{2}\right) + 2\tan\left(\dfrac{\alpha}{2}\right)} = \dfrac{1 - \tan^{2}\left(\dfrac{\alpha}{2}\right)}{\tan^{2}\left(\dfrac{\alpha}{2}\right) + 2\tan\left(\dfrac{\alpha}{2}\right) + 1} ,

where the identity sec 2 ( x ) = tan 2 ( x ) + 1 \sec^{2}(x) = \tan^{2}(x) + 1 was used. The expression can now be factored as

( 1 tan ( α 2 ) ) ( 1 + tan ( α 2 ) ) ( 1 + tan ( α 2 ) ) 2 = 1 tan ( α 2 ) 1 + tan ( α 2 ) = 1 k 1 + k \dfrac{\left(1 - \tan\left(\dfrac{\alpha}{2}\right)\right)\left(1 + \tan\left(\dfrac{\alpha}{2}\right)\right)}{\left(1 + \tan\left(\dfrac{\alpha}{2}\right)\right)^{2}} = \dfrac{1 - \tan\left(\dfrac{\alpha}{2}\right)}{1 + \tan\left(\dfrac{\alpha}{2}\right)} = \boxed{\dfrac{1 - k}{1 + k}} , assuming sin ( α ) 1 \sin(\alpha) \ne -1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...