This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The question demands for the Maximum and minimum value of the above function.
Lemma: If there is a function of the form a cos θ + b sin θ + c , then it falls in the range of
a 2 + b 2 + c ≥ a cos θ + b sin θ + c ≥ − a 2 + b 2 + c
Solution
We have 5 cos θ + 3 cos ( 3 π + θ ) + 3
⟹ 5 cos θ + 3 cos θ cos 3 π − 3 sin θ sin 3 π + 3
⟹ 5 cos θ + 3 cos θ × 2 1 − 3 sin θ × 2 3 + 3
⟹ 2 1 3 cos θ − 2 3 3 sin θ + 3 [ Brought down to the form a cos x + b sin x + c ]
⟹ 2 2 1 3 2 + 2 2 2 7 + 3 ≥ 5 cos θ + 3 cos ( 3 π + θ ) + 3 ≥ − 2 2 1 3 2 + 2 2 2 7 + 3
⟹ 7 + 3 ≥ 5 cos θ + 3 cos ( 3 π + θ ) + 3 ≥ − 7 + 3
⟹ 1 0 ≥ 5 cos θ + 3 cos ( 3 π + θ ) + 3 ≥ − 4
So Range = [ − 4 , 1 0 ]
And hence answer is [ − 4 , 1 0 ]