Trig Sum How

Geometry Level 1

sin 2 1 + sin 2 2 + sin 2 3 + + sin 2 8 8 + sin 2 8 9 + sin 2 9 0 = ? \sin ^{ 2 }{ 1^{\circ} } +\sin ^{ 2 }{ 2^{\circ} } +\sin ^{ 2 }{ 3^{\circ} } + \ldots \\ +\sin ^{ 2 }{ 88^{\circ} } +\sin ^{ 2 }{ 89^{\circ} } +\sin ^{ 2 }{ 90^{\circ} } = \ ?


The answer is 45.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Cs ಠ_ಠ Lee
Apr 25, 2015

We'll be using the Pythagorean identity that states sin 2 ( x ) + cos 2 ( x ) = 1 \sin^2(x)+\cos^2(x) = 1 and the cofunction identity that says cos ( 90 x ) = sin x \cos(90 - x) = \sin x

Using these identities, we see that cos 2 ( 1 ) = sin 2 ( 89 ) , cos 2 ( 2 ) = sin 2 ( 88 ) , cos 2 ( 3 ) = sin 2 ( 87 ) . . . \cos^2(1) = \sin^2(89), \cos^2(2) = \sin^2(88), \cos^2(3) = \sin^2(87) ...

Therefore, ignoring the sin ( 90 ) \sin(90) , we find that there are 44 pairs of Pythagorean identities that each sum to 1.

Now we are just left with sin 2 ( 45 ) \sin^2(45) and sin ( 90 ) 2 \sin(90)^2 .

Well this is easy! sin 2 ( 45 ) = ( 1 2 ) 2 = 1 2 \sin^2(45) = (\frac{1}{\sqrt{2}})^2 =\frac{1}{2} and sin ( 90 ) 2 = 1 1 2 = 1 \sin(90)^2 = \frac{1}{1}^2 =1

Therefore, we have 44 + 1 + 0.5 = 45.5 44+1+0.5 = \boxed{45.5}

Devin Ky
Apr 25, 2015

cos x = sin ( 9 0 x ) \cos x = \sin (90^\circ-x) The equation thus becomes sin 2 1 + cos 2 1 + sin 2 2 + cos 2 2 + + sin 2 4 4 + cos 2 4 4 + sin 2 4 5 + sin 2 9 0 . \sin^2 1^\circ + \cos^2 1^\circ + \sin^2 2^\circ + \cos^2 2^\circ + \ldots + \sin^2 44^\circ + \cos^2 44^\circ + \sin^2 45^\circ + \sin^2 90^\circ.

We know that sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 for all real x x , thus we have the given expression as 1 + 1 + 1 + 1 + 1 + . . . + 1 + sin 2 4 5 + sin 2 9 0 = 44 + 0.5 + 1 = 45.5. 1+1+1+1+1+...+1 + \sin^2 45^\circ + \sin^2 90^\circ = 44 + 0.5 + 1 = 45.5. \square

Good and correct answer.

Parmod Kumar - 6 years, 1 month ago

Well framed

Adolphout H - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...