Trigo .. again!

Geometry Level 5

Four real numbers a a , b b , c c , and d d in the interval [ 0 , π ] [0,\pi] satisfy the following system of equations:

{ sin a + 7 sin b = 4 ( sin c + 2 sin d ) cos a + 7 cos b = 4 ( cos c + 2 cos d ) \begin{cases} \begin{aligned} \sin a+7\sin b & =4(\sin c+2\sin d) \\ \cos a+7\cos b & =4(\cos c+2\cos d) \end{aligned} \end{cases}

If 7 cos ( b c ) cos ( a d ) = m \dfrac{7\cos(b-c)}{\cos(a-d)}=m and ( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 3 ) ( 1 + tan 4 5 ) = 2 n (1+\tan1^\circ)(1+\tan2^\circ)(1+\tan3^\circ)\cdots(1+\tan45^\circ)=2^n , which of the following statements is correct concerning m m and n n ?

Both m m and n n are perfect squares. m m is divisible by n . n. m m is a prime number. n n is a composite number.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Jan 20, 2021

Claim 1: 7 cos ( b c ) cos ( a d ) = 2 \frac{7\cos (b-c)}{\cos (a-d)}=2 Proof: \;\; Using the Sum and Difference Formulas for Cosine, cos ( b c ) = cos b cos c + sin b sin c \cos (b-c)=\cos b\cos c+\sin b\sin c\; cos ( a d ) = cos a cos d + sin a sin d \;\cos(a-d)=\cos a\cos d+\sin a\sin d In order to match the given equations with the above equations, we rewrite it as, sin a 8 sin d = 4 sin c 7 sin b sin 2 a 16 sin a sin d + 64 sin 2 d = 16 sin 2 c 56 sin c sin b + 49 sin 2 b (1) \sin a-8\sin d=4\sin c-7\sin b\;\implies \sin^2 a-16\sin a \sin d+64\sin^2 d=16\sin^2 c-56\sin c\sin b+49\sin ^2b \tag{1} cos a 8 cos d = 4 cos c 7 cos b cos 2 a 16 cos a cos d + 64 cos 2 d = 16 cos 2 c 56 cos c cos b + 49 cos 2 b (2) \;\;\;\cos a -8\cos d=4\cos c-7\cos b\implies \cos^2 a-16\cos a\cos d+64\cos^2 d=16\cos^2 c-56\cos c\cos b+49\cos ^2b\tag{2} Adding ( 1 ) (1) and ( 2 ) (2) , sin 2 a + cos 2 a 16 ( sin a sin d + cos a cos d ) + 64 ( sin 2 d + cos 2 d ) = 16 ( sin 2 c + cos 2 c ) 56 ( sin c sin b + cos c cos b ) + 49 ( sin 2 b + cos 2 b ) 1 16 cos ( a d ) + 64 = 16 56 cos ( b c ) + 49 2 cos ( a d ) = 7 cos ( b c ) 7 cos ( b c ) cos ( a d ) = 2 \begin{aligned} \sin^2a+\cos^2a-16(\sin a \sin d+\cos a\cos d)+64(\sin^2 d+\cos^2 d)&=16(\sin^2 c+\cos ^2c)-56(\sin c\sin b+\cos c\cos b)+49(\sin ^2b+\cos ^2b) \\ 1-16\cos (a-d)+64&=16-56\cos (b-c)+49 \\ 2\cos (a-d)&=7\cos (b-c) \\ \therefore \frac{7\cos (b-c)}{\cos (a-d)}&=2 \end{aligned}


Claim 2: ( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 4 5 ) = 2 23 (1+\tan 1^{\circ})(1+\tan 2^{\circ})\cdots (1+\tan 45^{\circ})=2^{23} Proof: \;\; Using the Sum and Difference Formulas for Tangent, when the two angles add up to 4 5 45^{\circ} , tan ( x + y ) = tan x + tan y 1 tan x tan y 1 tan x tan y = tan x + tan y 2 = ( 1 + tan x ) ( 1 + tan y ) \begin{aligned} \tan (x+y)&=\frac{\tan x+\tan y}{1-\tan x\tan y} \\ 1-\tan x\tan y&=\tan x+\tan y \\ \implies 2&=(1+\tan x)(1+\tan y) \end{aligned} Note, ( 1 + tan 1 ) ( 1 + tan 4 4 ) = 2 ( 1 + tan 2 ) ( 1 + tan 4 3 ) = 2 ( 1 + tan 3 ) ( 1 + tan 4 2 ) = 2 . . . ( 1 + tan 2 2 ) ( 1 + tan 2 3 ) = 2 1 + tan 4 5 = 2 \begin{aligned} (1+\tan 1^{\circ})&(1+\tan 44^{\circ})=2 \\ (1+\tan 2^{\circ})&(1+\tan 43^{\circ})=2 \\ (1+\tan 3^{\circ})&(1+\tan 42^{\circ})=2 \\ &. \\ &. \\ &. \\ (1+\tan 22^{\circ})&(1+\tan 23^{\circ})=2 \\ &\;\;\;1+\tan 45^{\circ}=2 \end{aligned} Multiplying the above equations, ( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 4 5 ) = 2 23 (1+\tan 1^{\circ})(1+\tan 2^{\circ})\cdots (1+\tan 45^{\circ})=2^{23}


So, m = 2 \boxed{m=2} and n = 23 \boxed{n=23} and the only true statement is: m m is a prime number.

Brilliant solution to an awesome problem, Sathvik Acharya. How can you reconcile your answer with the method I used (see reports). Where did I go wrong in my reasoning?

James Wilson - 4 months, 3 weeks ago

Log in to reply

Thanks :) I have replied to the report, hope it helps.

Sathvik Acharya - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...