Four real numbers , , , and in the interval satisfy the following system of equations:
If and , which of the following statements is correct concerning and ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Claim 1: cos ( a − d ) 7 cos ( b − c ) = 2 Proof: Using the Sum and Difference Formulas for Cosine, cos ( b − c ) = cos b cos c + sin b sin c cos ( a − d ) = cos a cos d + sin a sin d In order to match the given equations with the above equations, we rewrite it as, sin a − 8 sin d = 4 sin c − 7 sin b ⟹ sin 2 a − 1 6 sin a sin d + 6 4 sin 2 d = 1 6 sin 2 c − 5 6 sin c sin b + 4 9 sin 2 b ( 1 ) cos a − 8 cos d = 4 cos c − 7 cos b ⟹ cos 2 a − 1 6 cos a cos d + 6 4 cos 2 d = 1 6 cos 2 c − 5 6 cos c cos b + 4 9 cos 2 b ( 2 ) Adding ( 1 ) and ( 2 ) , sin 2 a + cos 2 a − 1 6 ( sin a sin d + cos a cos d ) + 6 4 ( sin 2 d + cos 2 d ) 1 − 1 6 cos ( a − d ) + 6 4 2 cos ( a − d ) ∴ cos ( a − d ) 7 cos ( b − c ) = 1 6 ( sin 2 c + cos 2 c ) − 5 6 ( sin c sin b + cos c cos b ) + 4 9 ( sin 2 b + cos 2 b ) = 1 6 − 5 6 cos ( b − c ) + 4 9 = 7 cos ( b − c ) = 2
Claim 2: ( 1 + tan 1 ∘ ) ( 1 + tan 2 ∘ ) ⋯ ( 1 + tan 4 5 ∘ ) = 2 2 3 Proof: Using the Sum and Difference Formulas for Tangent, when the two angles add up to 4 5 ∘ , tan ( x + y ) 1 − tan x tan y ⟹ 2 = 1 − tan x tan y tan x + tan y = tan x + tan y = ( 1 + tan x ) ( 1 + tan y ) Note, ( 1 + tan 1 ∘ ) ( 1 + tan 2 ∘ ) ( 1 + tan 3 ∘ ) ( 1 + tan 2 2 ∘ ) ( 1 + tan 4 4 ∘ ) = 2 ( 1 + tan 4 3 ∘ ) = 2 ( 1 + tan 4 2 ∘ ) = 2 . . . ( 1 + tan 2 3 ∘ ) = 2 1 + tan 4 5 ∘ = 2 Multiplying the above equations, ( 1 + tan 1 ∘ ) ( 1 + tan 2 ∘ ) ⋯ ( 1 + tan 4 5 ∘ ) = 2 2 3
So, m = 2 and n = 2 3 and the only true statement is: m is a prime number.