Trigo bash-3

Geometry Level 3

In a A B C \triangle ABC , A D AD is the altitude from A A to B C BC . Given that b > c b > c , C = 2 3 \angle C=23^\circ and A D = a b c b 2 c 2 AD=\dfrac {abc}{b^2-c^2} , what is the measure of B \angle B in degrees?


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 14, 2018

sin B = A D c = a b b 2 c 2 By cosine rule: c 2 = a 2 + b 2 2 a b cos C = b 2 b cos C a By sine rule: sin A a = sin B b = sin C c = c sin B sin C 2 c sin B cos C sin C c sin A sin C = sin B 2 sin B cos C sin A \begin{aligned} \sin B & = \frac {AD}c \\ & = \frac {ab}{b^2-c^2} & \small \color{#3D99F6} \text{By cosine rule: }c^2 = a^2 + b^2 - 2ab\cos C \\ & = \frac b{2b\cos C - a} & \small \color{#3D99F6} \text{By sine rule: }\frac {\sin A}a = \frac {\sin B}b = \frac {\sin C}c \\ & = \frac {\frac {c\sin B}{\sin C}}{2 \frac {c\sin B \cos C}{\sin C} - \frac {c\sin A}{\sin C}} \\ & = \frac {\sin B}{2\sin B \cos C- \sin A} \end{aligned}

2 sin B cos C sin A = 1 Note that sin A = sin ( 18 0 B C ) = sin ( B + C ) 2 sin B cos C sin ( B + C ) = 1 2 sin B cos C sin B cos C cos B sin C = 1 sin B cos C cos B sin C = 1 sin ( B C ) = 1 B C = 9 0 B = 9 0 + 2 3 = 113 \begin{aligned} \implies 2 \sin B \cos C - \color{#3D99F6} \sin A & = 1 & \small \color{#3D99F6} \text{Note that }\sin A = \sin (180^\circ - B-C) = \sin (B+C) \\ 2 \sin B \cos C - \color{#3D99F6} \sin (B+C) & = 1 \\ 2 \sin B \cos C - \sin B\cos C - \cos B \sin C & = 1 \\ \sin B \cos C - \cos B \sin C & = 1 \\ \sin (B-C) & = 1 \\ \implies B - C & = 90^\circ \\ B & = 90^\circ + 23^\circ \\ & = \boxed{113}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...