Trigo + Binomial!

1 + 1 3 + 1 3 3 6 + 1 3 3 6 5 9 + 1 3 3 6 5 9 7 12 + = 2 cos θ 1+\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{3}{6}+\dfrac{1}{3}\cdot\dfrac{3}{6}\cdot\dfrac{5}{9}+\dfrac{1}{3}\cdot\dfrac{3}{6}\cdot\dfrac{5}{9}\cdot\dfrac{7}{12}+\cdots=2\cos\theta

Find the value of θ \theta in degrees if 0 θ π 0 \le \theta \le π .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 25, 2018

Considering the binomial expansion of 1 1 x \dfrac 1{\sqrt{1-x}} :

( 1 x ) 1 2 = 1 + 1 2 x 1 ! + 1 2 3 2 x 2 2 ! + 1 2 3 2 5 2 x 3 3 ! + 1 2 3 2 5 2 7 2 4 3 4 ! + Putting x = 2 3 1 1 2 3 = 1 + 1 3 1 ! + 1 3 3 2 2 ! + 1 3 5 3 3 3 ! + 1 3 5 7 3 4 4 ! + 3 = 1 + 1 3 + 1 3 3 6 + 1 3 3 6 5 9 + 1 3 3 6 5 9 7 12 + \begin{aligned} (1-x)^{-\frac 12} & = 1 + \frac 12\cdot \frac x{1!} + \frac 12 \cdot \frac 32 \cdot \frac {x^2}{2!} + \frac 12 \cdot \frac 32 \cdot \frac 52 \cdot \frac {x^3}{3!} + \frac 12 \cdot \frac 32 \cdot \frac 52 \cdot \frac 72 \cdot \frac {4^3}{4!} + \cdots & \small \color{#3D99F6} \text{Putting }x = \frac 23 \\ \implies \frac 1{\sqrt{1-\frac 23}} & = 1 + \frac 1{3\cdot 1!} + \frac {1\cdot 3}{3^2\cdot 2!} + \frac {1\cdot 3 \cdot 5}{3^3\cdot 3!} + \frac {1\cdot 3 \cdot 5 \cdot 7}{3^4\cdot 4!} + \cdots \\ \sqrt 3 & = 1 + \frac 13 + \frac 13 \cdot \frac 36 + \frac 13 \cdot \frac 36 \cdot \frac 59 + \frac 13 \cdot \frac 36 \cdot \frac 59 \cdot \frac 7{12} + \cdots \end{aligned}

Therefore 2 cos θ = 3 2\cos \theta = \sqrt 3 cos θ = 3 2 \implies \cos \theta = \dfrac {\sqrt 3}2 θ = 30 \implies \theta = \boxed{30}^\circ for 0 θ 18 0 0^\circ \le \theta \le 180^\circ .

Did same here.A very easy and oral question if one knows basic binomial expansions.Further is just a formality.

D K - 2 years, 10 months ago
Vitor Juiz
Apr 25, 2018

Nice solution

LUCAS MACHADO - 3 years, 1 month ago

Actually when solving for a general case you should not write it as the "C" notation ( or the binomial coefficient notation) as it is valid if n is a positive integer . Although it looks the same after evaluating it is not proper. You should write nC2 simply as n(n-1)/2 ( as this is derived from differentiation and not pascals triangle as original binomial theorem is ) .
You can use the "C" notation when we are dealing with n as a positive integer.

Arghyadeep Chatterjee - 3 years, 1 month ago

Log in to reply

Thanks. I'll do that in my future solutions.

Vitor Juiz - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...