Trigo evaluation

Geometry Level 3

1 4 sec 2 2 π 7 + 1 4 sec 2 4 π 7 + 1 4 sec 2 6 π 7 = ? \large \dfrac{1}{4-\sec^{2}\frac{2\pi}{7}} + \dfrac{1}{4-\sec^{2}\frac{4\pi}{7}} + \dfrac{1}{4-\sec^{2}\frac{6\pi}{7}} = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Noel Lo
Feb 24, 2015

Express 1/(4 - s e c 2 sec^{2} x) as cos^{2} x/(4 c o s 2 cos^{2} x - 1) and then c o s 2 cos^{2} x/(3 - 4 s i n 2 sin^{2} x ) by substituting c o s 2 cos^{2} x = 1 - s i n 2 sin^{2} x. Then we get c o s 2 cos^{2} x sin x/(3 sin x - 4 s i n 3 sin^{3} x) = c o s 2 cos^{2} x sin x/ sin 3x. By applying this to all 3 terms in the equation we get c o s 2 cos^{2} (2pi/7) sin (2pi/7)/sin (6pi/7) + c o s 2 cos^{2} (4pi/7) sin (4pi/7)/sin (12pi/7) + c o s 2 cos^{2} (6pi/7) sin (6pi/7)/sin (18pi/7).

Now we can rewrite sin (6pi/7) as sin (pi - 6pi/7) = sin (pi/7), sin (12pi/7) as -sin (2pi - 12pi/7) = -sin (2pi/7) and sin (18pi/7) as sin (3pi-18pi/7) = sin (3pi/7). Now for each term we get a form c o s 2 cos^{2} 2x sin 2x/sin x which reduces to 2 c o s 2 cos^{2} 2x cos x as sin 2x = 2 sin x cos x. Hence we have 2 c o s 2 cos^{2} (2pi/7) cos (pi/7) - 2 c o s 2 cos^{2} (4pi/7) cos (2pi/7) + 2 c o s 2 cos^{2} (6pi/7) cos (3pi/7) which gives us 2 c o s 2 cos^{2} (2pi/7) cos (pi/7) - 2 c o s 2 cos^{2} (3pi/7) cos (2pi/7) + 2 c o s 2 cos^{2} (pi/7) cos (3pi/7) by invoking cos x = -cos (pi-x).

Using angle sum and difference formula we get cos (2pi/7) (cos 3pi/7 + cos pi/7) - cos (3pi/7) (cos 5pi/7 + cos pi/7) + cos (pi/7) (cos 4pi/7 + cos 2pi/7) = cos (2pi/7) (cos 3pi/7 + cos pi/7) - cos (3pi/7) (-cos 2pi/7 + cos pi/7) + cos (pi/7) (-cos 3pi/7 + cos 2pi/7) = 2 (cos pi/7 cos 2pi/7 - cos pi/7 cos 3pi/7 + cos 2pi/7 cos 3pi/7) Applying the same formula again, we get cos (3pi/7) + cos (pi/7) - cos (4pi/7) - cos (2pi/7) + cos (5pi/7) + cos (pi/7) = 2(cos pi/7 - cos 2pi/7 + cos 3pi/7) by using the good old formula cos x = -cos (pi-x) again.

Finally, we can express 2(cos pi/7 - cos 2pi/7 + cos 3pi/7) as 2(2 cos 2pi/7 cos pi/7 - cos 2pi/7) = 2cos (2pi/7)(2 cos pi/7 - 1) = 2cos (2pi/7)(-2 cos 6pi/7 - 1) = 2cos (2pi/7)(4 sin^{2} 3pi/7 - 3) using the double angle formula. Now invoking the triple angle formula, we get -2 cos (2pi/7) sin (9pi/7)/sin (3pi/7) = 2cos (2pi/7) sin (2pi/7)/sin (3pi/7) (since sin x = -sin(pi+x)) = sin (4pi/7)/sin (3pi/7) = 1 since sin x = sin (pi-x).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...