Is Pythagoras Identities sufficient?

Geometry Level 1

4 sin 2 ( x ) + tan 2 ( x ) + cot 2 ( x ) + csc 2 ( x ) = 6 \large 4\sin^2 (x) + \tan^2(x) + \cot^2(x) + \csc^2(x) = 6

Find the number of solutions of x x in the interval [ 0 , 2 π ] [0,2\pi] that satisfy the equation above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Jun 16, 2015

4 sin 2 ( x ) + csc 2 ( x ) + tan 2 ( x ) + cot 2 ( x ) = 6 ( 2 sin ( x ) 1 sin ( x ) ) 2 + 4 + ( tan ( x ) 1 tan ( x ) ) 2 + 2 = 6 ( 2 sin ( x ) 1 sin ( x ) ) 2 + ( tan ( x ) 1 tan ( x ) ) 2 = 0 \begin{aligned} 4\sin^2(x) + \csc^2(x) + \tan^2 (x) + \cot^2(x) &=& 6 \\ \left(2\sin(x) - \frac1{\sin(x)} \right)^2 + 4 + \left(\tan(x) - \frac1{\tan(x)} \right)^2 + 2&=& 6 \\ \left(2\sin(x) - \frac1{\sin(x)} \right)^2 + \left(\tan(x) - \frac1{\tan(x)} \right)^2 &=& 0 \\ \end{aligned}

Sum of squares of two real numbers equals to 0 implies that both these two numbers equals 0.

2 sin ( x ) 1 sin ( x ) = 0 , tan ( x ) 1 tan ( x ) = 0 x = ± π 4 + π n 2\sin(x) - \frac1{\sin(x)} = 0, \tan(x) - \frac1{\tan(x)} = 0 \Rightarrow x = \pm \frac\pi4 + \pi n

for integer n n . But x x is restricted to only [ 0 , 2 π ] [0,2\pi] , so there are 4 \boxed4 solutions, namely x = π 4 , 3 π 4 , 4 π 4 , 7 π 4 x= \frac\pi4, \frac{3\pi}4, \frac{4\pi}4, \frac{7\pi}4 .

Moderator note:

This also shows that

4 sin 2 ( x ) + csc 2 ( x ) + tan 2 ( x ) + cot 2 ( x ) 6 4\sin^2(x) + \csc^2(x) + \tan^2 (x) + \cot^2(x) \geq 6

Finding the minimum of the more general case n sin 2 ( x ) + csc 2 ( x ) + tan 2 ( x ) + cot 2 ( x ) n\sin^2(x) + \csc^2(x) + \tan^2 (x) + \cot^2(x)

seems to be harder.

Awesome solution! Are you an IMO winner or a mathematician.

Siddharth Singh - 5 years, 12 months ago

Challenge Master: apply double angle formula, cos ( 2 A ) = 2 cos 2 ( A ) 1 = 1 2 sin 2 ( A ) \cos(2A) = 2\cos^2(A) - 1 = 1- 2\sin^2(A) and csc 2 ( A ) = cot 2 ( A ) 1 \csc^2(A) = \cot^2(A) - 1 .

Let f n ( x ) f_n(x) denote the function above. Then, we have f n ( x ) = n 2 ( 1 cos ( 2 x ) ) + 4 1 cos ( 2 x ) + 2 ( 1 cos ( 2 x ) ) 4 f_n(x) = \frac n2(1-\cos(2x)) + \frac4{1-\cos(2x)} + \frac2{(1-\cos(2x)) - 4} . Let z = 1 cos ( 2 x ) z = 1-\cos(2x) .

Apply chain rule, d y d x = d y d z × d z d x \frac {dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx} . And at extremal point(s), d y d x = 0 \frac{dy}{dx} = 0 .

We are left to solve the root(s) of z z in the interval [ 0 , 2 ] [0,2] for z 4 ( n ) + z 3 ( 8 n ) + z 2 ( 16 n 12 ) + z ( 64 ) 128 = 0 z^4(n) + z^3(-8n) + z^2(16n-12) + z(64) - 128 = 0 . Noting that sin ( 2 x ) 1 \sin(2x) \ne 1 else the denominator of one of the fractions of f n ( x ) f_n(x) is undefined.

With specific n n , we just need to determine whether each of these roots are minimum or maximum by the construction of the second derivative test table.

Pi Han Goh - 5 years, 12 months ago

Expressing everything in sin gives:

4 sin 4 x 12 sin 3 x + 9 sin 2 x 2 = 0 4\sin^4 x -12\sin^3 x + 9\sin^2 x - 2 = 0

Let 4 k 3 12 k 2 + 9 k 2 = 0 4k^3 -12k^2 + 9k - 2 = 0

( k 2 ) 2 ( k 1 2 ) = 0 (k -2)^2(k -\frac12) =0

As sin x 1 \sin x ≤ 1 , sin x = 1 2 . \sin x = \dfrac{1}{\sqrt2}.

Shubhrajit Sadhukhan - 4 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...