Trigo Here!

Geometry Level 3

3 + cot ( 7 6 ) cot ( 1 6 ) cot ( 7 6 ) + cot ( 1 6 ) = cot ( x ) \large \frac{3+\cot(76^\circ)\cot(16^\circ)}{\cot(76^\circ)+\cot(16^\circ)}=\cot(x^\circ)

Given the above, find x x .

88 46 92 44

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

3 + cot 7 6 cot 1 6 cot 7 6 + cot 1 6 = 3 + cot ( 60 + 16 ) cot 1 6 cot ( 60 + 16 ) + cot 1 6 Let t = tan 1 6 = 3 + 1 3 t 3 + t × 1 t 1 3 t 3 + t + 1 t = 3 t 2 + 2 3 t + 1 3 + 2 t 3 t 2 = ( 3 t + 1 ) 2 ( 3 t ) ( 3 t + 1 ) = 3 t + 1 3 t = 1 + tan 6 0 tan 1 6 tan 6 0 tan 1 6 = cot ( 60 16 ) = cot 4 4 \begin{aligned} \frac {3+\cot 76^\circ \cot 16^\circ}{\cot 76^\circ + \cot 16^\circ} & = \frac {3+\cot (60+16)^\circ \cot 16^\circ}{\cot (60+16)^\circ + \cot 16^\circ} & \small \color{#3D99F6} \text{Let }t = \tan 16^\circ \\ & = \frac {3+\frac {1-\sqrt 3t}{\sqrt 3+t}\times \frac 1t}{\frac {1-\sqrt 3t}{\sqrt 3+t}+\frac 1t} \\ & = \frac {3t^2+2\sqrt 3t+1}{\sqrt 3 +2t-\sqrt 3 t^2} \\ & = \frac {(\sqrt 3t+1)^2}{(\sqrt 3-t)(\sqrt 3t+1)} \\ & = \frac {\sqrt 3t+1}{\sqrt 3-t} \\ & = \frac {1+\tan 60^\circ\tan 16^\circ}{\tan 60^\circ - \tan 16^\circ} \\ & = \cot (60-16)^\circ \\ & = \cot 44^\circ \end{aligned}

Therefore, x = 44 x= \boxed{44} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...