Trigo Lovers cannot be short of problems

Geometry Level 4

( 1 2 + cos ( π 20 ) ) ( 1 2 + cos ( 3 π 20 ) ) ( 1 2 + cos ( 9 π 20 ) ) ( 1 2 + cos ( 27 π 20 ) ) = ? \large \left( \frac12 + \cos\left(\frac\pi{20}\right)\right) \left( \frac12 + \cos\left(\frac{3\pi}{20}\right)\right) \left( \frac12 + \cos\left(\frac{9\pi}{20}\right)\right) \left( \frac12 + \cos\left(\frac{27\pi}{20}\right)\right) = \ ?

Give your answer to 4 decimal places.

This is a very very beautiful problem. This is a part of Trigo Plus! .


The answer is 0.0625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Jul 13, 2015

1 + 2 cos 2 x = 1 + 2 ( 1 2 sin 2 x ) 1+2 \cos 2x =1+2(1-2 \sin^2 x) = 3 4 sin 2 x = sin 3 x sin x =3-4 \sin^2 x= \large \frac{\sin 3x}{\sin x}

Given product becomes P = ( 1 2 + cos π 20 ) ( 1 2 + cos 3 π 20 ) ( 1 2 + cos 9 π 20 ) ( 1 2 + cos 27 π 20 ) P=(\frac{1}{2}+ \cos \frac{\pi}{20})(\frac{1}{2}+ \cos \frac{3\pi}{20})(\frac{1}{2}+ \cos \frac{9\pi}{20})(\frac{1}{2}+ \cos \frac{27\pi}{20})\\ = 1 2 4 sin 3 π 20 sin π 20 sin 9 π 20 sin 3 π 20 sin 27 π 20 sin 9 π 20 sin 81 π 20 sin 27 π 20 = \cdot \frac{1}{2^4} \frac{\sin \frac{3\pi}{20}}{\sin \frac{\pi}{20}} \frac{\sin \frac{9\pi}{20}}{\sin \frac{3\pi}{20}} \frac{\sin \frac{27\pi}{20}}{\sin \frac{9\pi}{20}} \frac{\sin \frac{81\pi}{20}}{\sin \frac{27\pi}{20}} = 1 2 4 sin 81 π 20 sin π 20 =\frac{1}{2^4}\frac{\sin \frac{81\pi}{20}}{\sin \frac{\pi}{20}}

Now sin 81 π 20 = sin ( 4 π + π 20 ) = sin π 20 \sin \frac{81\pi}{20} = \sin (4\pi + \frac{\pi}{20}) = \sin\frac{\pi}{20}

Putting back we get P = 1 2 4 = 0.0625 P= \frac{1}{2^4}= \boxed {0.0625}

Moderator note:

Interesting observation. How can one solve this problem without already knowing this identity?


Note that in your denominator, the first sin \sin term should be sin π 20 \sin \frac{\pi}{20} instead of sin 9 π 20 \sin \frac{ 9 \pi } { 20} .

very good solution upvoted....but when you have solved this how did you know or how it comes in your mind to use which identity..please help me i 'm struggling in trignometry

Harshi Singh - 5 years, 8 months ago

GGGH GGUHUHU GGUGHUHGU UGUHGHJ

Shobhit Singh - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...