cos 8 0 ∘ 1 − sin 8 0 ∘ 3 = ?
Hint: How can we write the numerators in relation to common trig values?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Related: R-method
Consider the following angle formulas sin 3 x = 3 sin x − 4 sin 3 x cos 3 x = 4 cos 3 x − 3 cos x If we let x = 8 0 o then sin 8 0 o ( 3 − 4 sin 2 8 0 o ) = sin 2 4 0 o = − 2 3 cos 8 0 o ( 4 cos 2 8 0 o − 3 ) = cos 2 4 0 o = − 2 1
Now in reference to the original question. cos 8 0 o 1 − sin 8 0 o 3 = cos 8 0 o ( 4 cos 2 8 0 o − 3 ) 4 cos 2 8 0 o − 3 − sin 8 0 o ( 3 − 4 sin 2 8 0 o ) 3 ( 3 − 4 sin 2 8 0 o ) = − 2 1 4 cos 2 8 0 o − 3 + − 2 3 3 ( 4 sin 2 8 0 o − 3 ) = − 2 ( 4 cos 2 8 0 o − 3 + 4 sin 2 8 0 o − 3 ) = − 2 ( 4 − 6 ) = 4
Considering that the triple angle formula is a special case of sum and difference formula, it would be simpler to do Tanishq Varshney's way. Either way, it works!
Seems a tad bit unwieldy to do your substitutions.
cos 8 0 ∘ 1 − sin 8 0 ∘ 3 = cos 8 0 ∘ sin 8 0 ∘ sin 8 0 ∘ − 3 cos 8 0 ∘ = 2 1 ( 2 cos 8 0 ∘ sin 8 0 ∘ ) 2 ( 2 1 sin 8 0 ∘ − 2 3 cos 8 0 ∘ ) = sin 1 6 0 ∘ 4 ( cos 6 0 ∘ sin 8 0 ∘ − sin 6 0 ∘ cos 8 0 ∘ ) = sin ( 1 8 0 ∘ − 1 6 0 ∘ ) 4 sin ( 8 0 ∘ − 6 0 ∘ ) = sin 2 0 ∘ 4 sin 2 0 ∘ = 4
I did the same way.
i think this is a much easier way
1 = 2 sin 30
square root of 3 = 2 cos 30
cos 80 = sin 10
sin 80 = cos 10
Then the given expression = (2 sin 30 cos 10 - 2 sin 10 cos 30)/sin 10 cos 10 ..... (1)
2 sin 30 cos 10 - 2 sin 10 cos 30 = 2 sin (30 - 10) = 2 sin 20 .......................................... (2)
sin 10 cos 10 = (1/2) sin 20 ........................................................................................................ (3)
From (1) , (2) and (3) we get
Then the given expression = 4
Problem Loading...
Note Loading...
Set Loading...
To get a common denominator, we have sin 8 0 o cos 8 0 o sin 8 0 o − 3 cos 8 0 o .
Then, we write the numerators in terms of trig values: 2 ⋅ sin 8 0 o cos 8 0 o 2 1 sin 8 0 o − 2 3 cos 8 0 o = 2 ⋅ sin 8 0 o cos 8 0 o cos 6 0 o sin 8 0 o − sin 6 0 o cos 8 0 o
Using Sine - Sum and Difference Formulas , this is
2 sin 8 0 o cos 8 0 o sin ( 8 0 o − 6 0 o )
Using Double Angle Identities , this is
4 sin 1 6 0 o sin 2 0 o
Using the Fundamental Trigonometric Identity sin ( 1 8 0 o − θ ) = sin ( θ ) , this is
4 sin 2 0 o sin 2 0 o
= 4