Trigo Series

Geometry Level 4

cos ( π 2 n + 1 ) + cos ( 3 π 2 n + 1 ) + cos ( 5 π 2 n + 1 ) + \cos \left( \frac{\pi}{2n+1} \right) + \cos \left( \frac{3\pi}{2n+1} \right) + \cos \left( \frac{5\pi}{2n+1} \right) +\cdots

Find the sum of the above expression up to n n terms.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jul 5, 2016

F = r = 1 n cos ( ( 2 r 1 ) π 2 n + 1 ) \mathfrak F= \sum^{n}_{r=1} \cos \left(\frac{(2r-1)\pi}{2n+1} \right) 2 sin ( π 2 n + 1 ) F = r = 1 n 2 cos ( ( 2 r 1 ) π 2 n + 1 ) sin ( π 2 n + 1 ) = r = 1 n ( sin ( 2 r π 2 n + 1 ) sin ( ( 2 r 2 ) π 2 n + 1 ) ) ( A T e l e s c o p i c S e r i e s ) = sin ( 2 n π 2 n + 1 ) F = sin ( 2 n π 2 n + 1 ) 2 sin ( π 2 n + 1 ) = 1 2 ( sin ( π x ) = sin x ) \small{\begin{aligned}2\sin \left(\frac{\pi}{2n+1} \right)\mathfrak F=& \sum^{n}_{r=1}2 \cos \left(\frac{(2r-1)\pi}{2n+1} \right) \sin \left(\frac{\pi}{2n+1} \right)\\=&\sum^{n}_{r=1} \left(\sin \left(\frac{2r\pi}{2n+1}\right) -\sin \left(\frac{(2r-2)\pi}{2n+1} \right)\right)\\&\\&\large{(\color{#0C6AC7}{\mathcal{A~Telescopic~Series}})}~~~\\=&\large{\sin \left(\frac{2n\pi}{2n+1} \right)}\\\large{\implies \mathfrak{F}=}&\large{\dfrac{\sin \left(\frac{2n\pi}{2n+1} \right)}{2\sin \left(\frac{\pi}{2n+1} \right)}}\\=&\large{\dfrac{1}{2}}~~~(\small{\because \sin (\pi-x)=\sin x})\end{aligned}}


Generalisation:- \text{Generalisation:-}

r = 1 n cos ( a + r d ) = sin ( n d 2 ) sin ( d 2 ) cos ( a + ( n 1 ) d 2 ) \displaystyle\sum_{r=1}^n\cos (a+rd)=\dfrac{\sin\left(\frac{nd}2\right)}{\sin\left(\frac d2\right)}\cos\left(a+(n-1)\frac d2\right)

(** Can be proved in a similar fashion)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...