Trigo vs geometry

Geometry Level 3

In quadrilateral P Q R S PQRS ,

P S = 4 PS=4 , R S = 6 RS=6 , Q R = 5 QR=5 ,

P = Q = 6 0 \angle P = \angle Q=60^\circ and

2 P Q = a + b 2PQ=a+\sqrt{b} , find value of 20 a b 20a-b .

Bonus: Solve using only geometry.


The answer is 39.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Gandoff Tan
Aug 12, 2019

Let x = a + b 2 \text{Let}\space x=\frac{a+\sqrt{b}}{2}

By the cosine rule, \text{By the cosine rule,}

6 2 = ( x 4 ) 2 + ( x 5 ) 2 2 ( x 4 ) ( x 5 ) cos ( 60 ° ) 36 = ( x 2 8 x + 16 ) + ( x 2 10 x + 25 ) 2 ( x 2 9 x + 20 ) ( 1 2 ) 36 = x 2 8 x + 16 + x 2 10 x + 25 + x 2 + 9 x 20 0 = x 2 9 x 15 x = ( 9 ) ± ( 9 ) 2 4 ( 1 ) ( 15 ) 2 ( 1 ) x = 9 ± 141 2 \begin{aligned} 6^2&={(x-4)}^2+{(x-5)}^2-2(x-4)(x-5)\cos(60°)\\ 36&=(x^2-8x+16)+(x^2-10x+25)-2(x^2-9x+20)\left(\frac12\right)\\ 36&=x^2-8x+16+x^2-10x+25+x^2+9x-20\\ 0&=x^2-9x-15\\ x&=\frac{-(-9)±\sqrt{{(-9)}^2-4(1)(-15)}}{2(1)}\\ x&=\frac{9±\sqrt{141}}{2} \end{aligned}

Since a + b 2 > 0 , \text{Since}\space \frac{a+\sqrt{b}}{2}>0,

a + b 2 9 + 141 2 a + b 9 + 141 \begin{aligned} \frac{a+\sqrt{b}}{2}&\iff\frac{9+\sqrt{141}}{2}\\ a+\sqrt{b}&\iff 9+\sqrt{141} \end{aligned}

a = 9 , b = 141 \Rightarrow a=9,\space b=141

Therefore, \text{Therefore,}

20 a b = 20 ( 9 ) 141 = 180 141 20 a b = 39 \begin{aligned} 20a-b&=20(9)-141\\ &=180-141\\ 20a-b&=\boxed{39} \end{aligned}

Rda .
Aug 6, 2019

https://hizliresim.com/nbJQaB

What have I seen in the website ????????????????????????

Isaac YIU Math Studio - 1 year, 10 months ago

What is this?

Mr. India - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...