Trigono Met Ry

Level 1

( 1 sin x 1 + sin x ) 2 = ? \large \left(\frac{1 - \sin x}{1 + \sin x}\right)^2 = ?

sin 3 ( 3 0 x 4 ) \sin^3 \left(30^\circ - \frac x4 \right) tan 4 ( x 2 4 5 ) \tan^4 \left(\frac x2 - 45^\circ \right) cos 3 ( 6 0 x 8 ) \cos^3\left(60^\circ - \frac x8\right) cot 4 ( x 16 9 0 ) \cot^4 \left(\frac x{16} -90^\circ \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 16, 2018

( 1 sin x 1 + sin x ) 2 = ( 1 2 tan x 2 1 + tan 2 x 2 1 + 2 tan x 2 1 + tan 2 x 2 ) 2 Using half-angle tangent substitution = ( tan 2 x 2 2 tan x 2 + 1 tan 2 x 2 + 2 tan x 2 + 1 ) 2 = ( ( tan x 2 1 ) 2 ( tan x 2 + 1 ) 2 ) 2 = ( sin x 2 cos x 2 1 sin x 2 cos x 2 + 1 ) 4 = ( sin x 2 cos x 2 sin x 2 + cos x 2 ) 4 = ( 1 2 sin x 2 1 2 cos x 2 1 2 sin x 2 + 1 2 cos x 2 ) 4 = ( sin ( x 2 4 5 ) cos ( x 2 4 5 ) ) 4 = tan 4 ( x 2 4 5 ) \begin{aligned} \left(\frac {1-\sin x}{1+\sin x}\right)^2 & = \left(\frac {1-\frac {2\tan \frac x2}{1+\tan^2 \frac x2}}{1+\frac {2\tan \frac x2}{1+\tan^2 \frac x2}}\right)^2 & \small \color{#3D99F6} \text{Using half-angle tangent substitution} \\ & = \left(\frac {\tan^2 \frac x2 - 2\tan \frac x2 + 1}{\tan^2 \frac x2 + 2\tan \frac x2 + 1}\right)^2 \\ & = \left(\frac {\left(\tan \frac x2 - 1\right)^2}{\left(\tan \frac x2 + 1\right)^2}\right)^2 \\ & = \left(\frac {\frac {\sin \frac x2}{\cos \frac x2}-1}{\frac {\sin \frac x2}{\cos \frac x2}+1}\right)^4 \\ & = \left(\frac {\sin \frac x2 - \cos \frac x2}{\sin \frac x2 + \cos \frac x2}\right)^4 \\ & = \left(\frac {\frac 1{\sqrt 2}\sin \frac x2 - \frac 1{\sqrt 2}\cos \frac x2}{\frac 1{\sqrt 2}\sin \frac x2 + \frac 1{\sqrt 2}\cos \frac x2}\right)^4 \\ & = \left(\frac {\sin \left(\frac x2 - 45^\circ\right)}{\cos \left(\frac x2 - 45^\circ\right)} \right)^4 \\ & = \boxed{\tan^4 \left(\frac x2 - 45^\circ\right)} \end{aligned}

The question stated with a power of 2 and not to the power of 4 ... The first step needs to be reconsulted

Ronojoy Paul - 3 years, 1 month ago

Log in to reply

Sorry, typos.

Chew-Seong Cheong - 3 years, 1 month ago

Log in to reply

It is still 4 not 2.

( 1 sin x 1 + sin x ) 4 \left(\dfrac{1-\sin x}{ 1+ \sin x}\right)^{4} .

Naren Bhandari - 3 years, 1 month ago
Ossama Ismail
Jan 3, 2019

Substitute x=90 on both sides.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...