Trigonobernic calculus

Calculus Level 3

0 π / 2 sin ( x ) sin ( x ) + cos ( x ) d x = π a \large \int_0^{\pi/2}\frac{\sin(x)}{\sin(x)+\cos(x)} dx = \frac{\pi}{a} Find a a .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution with @JD Money 's

I = 0 π 2 sin x sin x + cos x d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( sin x sin x + cos x + sin ( π x ) sin ( π x ) + cos ( π x ) ) d x = 1 2 0 π 2 ( sin x sin x + cos x + cos x cos x + sin x ) d x = 1 2 0 π 2 d x = x 2 0 π 2 = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sin x}{\sin x + \cos x} dx & \small \color{#3D99F6} \text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac {\sin x}{\sin x + \cos x} + \frac {\sin(\pi -x)}{\sin (\pi -x) + \cos (\pi -x)} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac {\sin x}{\sin x + \cos x} + \frac {\cos x}{\cos x+\sin x} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 dx = \frac x2 \ \bigg|_0^\frac \pi 2 = \frac \pi 4 \end{aligned}

a = 4 \implies a = \boxed{4} .

Jd Money
Nov 29, 2017

Use integral from a to b of f(x)dx = integral from a to b of f(a+b-x)dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...