Trigonofunction

Geometry Level 3

Determine whether the function f(x) \text{f(x)} is even or odd .

f(x) = ( 1 + tan ( π 3 x ) ) ( 1 + tan ( x π 12 ) ) \large \text{f(x)} = \left( 1 + \tan\left(\dfrac{\pi}{3} - x\right)\right)\left(1+ \tan\left(x - \dfrac{\pi}{12}\right)\right)

(Original Problem)
There is insufficient information Neither even nor odd Odd function Even function

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Sep 15, 2015

f ( x ) = ( 1 + tan ( π 3 x ) ) ( 1 + tan ( x π 3 + π 4 ) ) \large{f(x)=(1+\tan \left (\frac{\pi}{3}-x \right ))(1+\tan \left (x-\frac{\pi}{3}+\frac{\pi}{4} \right) )}

f ( x ) = ( 1 + tan ( π 3 x ) ) ( 1 + 1 + tan ( x π 3 ) 1 tan ( x π 3 ) ) \large{f(x)=(1+\tan \left (\frac{\pi}{3}-x \right ))(1+\frac{1+\tan \left (x-\frac{\pi}{3} \right )}{1-\tan \left (x-\frac{\pi}{3} \right )})}

f ( x ) = ( 1 + tan ( π 3 x ) ) 2 ( 1 tan ( x π 3 ) ) \large{f(x)=(1+\tan \left (\frac{\pi}{3}-x \right ))\frac{2}{(1-\tan \left (x-\frac{\pi}{3} \right ))}}

we know tan ( x ) = tan ( x ) \tan (-x)=-\tan (x)

f ( x ) = 2 \large{f(x)=2}

Kudos! Nice solution.

Akhil Bansal - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...