Trigonome- what?

Calculus Level 3

1000 0 π 2 2 2 sin x + cos x 1 + sin x + 2 cos x d x = ? \large \left\lfloor 1000\int_{0}^{\frac{\pi}{2}} \dfrac{2-2\sin x+\cos x}{1+\sin x+2\cos x} dx \right\rfloor=~?

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 693.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Boi (보이)
Aug 11, 2017

Note that ( 1 + sin x ) ( 1 sin x ) = cos 2 x . (1+\sin x)(1-\sin x)={\cos}^2 x.

Then cos x 1 + sin x = 2 2 sin x 2 cos x = 2 2 sin x + cos x 1 + sin x + 2 cos x , \dfrac{\cos x}{1+\sin x}=\dfrac{2-2\sin x}{2\cos x}=\dfrac{2-2\sin x+\cos x}{1+\sin x+2\cos x}, by using componendo .

Therefore, 2 2 sin x + cos x 1 + sin x + 2 cos x = cos x 1 + sin x . \dfrac{2-2\sin x+\cos x}{1+\sin x+2\cos x}=\dfrac{\cos x}{1+\sin x}.


Let 1 + sin x = t , 1+\sin x=t, then cos x d x = d t . \cos x ~dx=dt.

1000 0 π 2 2 2 sin x + cos x 1 + sin x + 2 cos x d x = 1000 0 π 2 cos x 1 + sin x d x = 1000 1 2 1 t d t = 1000 [ ln t ] 1 2 = 1000 ln 2 = 693 . \displaystyle \therefore~\left\lfloor 1000\int_{0}^{\frac{\pi}{2}} \dfrac{2-2\sin x+\cos x}{1+\sin x+2\cos x} dx \right\rfloor \\ \displaystyle =\left\lfloor 1000\int_{0}^{\frac{\pi}{2}} \dfrac{\cos x}{1+\sin x} dx \right\rfloor \\ \displaystyle =\left\lfloor 1000\int_{1}^{2} \dfrac{1}{t} dt \right\rfloor \\ =\left\lfloor 1000\left[\ln |t|\right]_{1}^{2} \right\rfloor \\ =\left\lfloor 1000\ln2 \right\rfloor \\ =\boxed{693}.

Mark Hennings
Aug 11, 2017

We have 0 1 2 π 2 d x 1 + sin x + 2 cos x = 0 1 2 π 2 d x 1 + cos x + 2 sin x = 0 1 2 π d x cos 2 1 2 x + 2 sin 1 2 x cos 1 2 x = 0 1 2 π sec 2 1 2 x d x 1 + 2 tan 1 2 x = [ ln ( 1 + 2 tan 1 2 x ) ] 0 1 2 π = ln 3 \begin{aligned} \int_0^{\frac12\pi} \frac{2\,dx}{1 + \sin x + 2\cos x} & = \; \int_0^{\frac12\pi} \frac{2\,dx}{1 + \cos x + 2\sin x} \; = \; \int_0^{\frac12\pi} \frac{dx}{\cos^2\tfrac12x + 2\sin\tfrac12x \cos\tfrac12x} \\ & = \; \int_0^{\frac12\pi} \frac{\sec^2\tfrac12x\,dx}{1 + 2\tan\tfrac12x} \; =\; \Big[\ln(1 +2\tan\tfrac12x)\Big]_0^{\frac12\pi} \; = \; \ln3 \end{aligned} while 0 1 2 π 2 sin x + cos x 1 + sin x + 2 cos x d x = [ ln ( 1 + sin x + 2 cos x ) ] 0 1 2 π = ln 2 3 \int_0^{\frac12\pi} \frac{-2\sin x + \cos x}{1 + \sin x + 2\cos x}\,dx \; = \; \Big[\ln(1 + \sin x + 2\cos x)\Big]_0^{\frac12\pi} \ = \; \ln\tfrac23 Adding these together, the desired integral is ln 2 \ln2 , making the answer 1000 ln 2 = 693 \lfloor 1000\ln2\rfloor = \boxed{693} .

James Wilson
Nov 15, 2017

H.M. and Mark Hennings had much better solutions than mine (and more creative as well), but I'll post mine anyway... I separated the fraction the same way Mark did. One of those integrals, namely, 0 π 2 2 sin x + cos x 1 + sin x + 2 cos x d x \int_0^{\frac{\pi}{2}} \frac{-2\sin{x}+\cos{x}}{1+\sin{x}+2\cos{x}}dx was straightforward to compute, as the numerator was simply the derivative of the denominator. Its value is ln 2 ln 3 \ln{2}-\ln{3} . I will be spending more time on 0 π 2 2 1 + sin x + 2 cos x d x \int_0^{\frac{\pi}{2}} \frac{2}{1+\sin{x}+2\cos{x}} dx . I let u = e i x u=e^{ix} . This leads to 1 i 2 1 + 1 1 u 2 i + 2 u + 1 u 2 d u i u \int_1^i \frac{2}{1+\frac{1-\frac{1}{u}}{2i}+2\frac{u+\frac{1}{u}}{2}} \frac{du}{iu} . Skipping some steps, this can be manipulated into 4 1 + 2 i 1 i d u ( u + 2 + i 5 ) 2 + ( 2 5 ( 2 + i ) ) 2 = 2 i [ arctan ( u ( 2 i ) + 1 2 ) ] 1 i = 2 i ( arctan ( 1 + i ) arctan ( 3 i 2 ) ) = 2 i ( i 2 ln i + 1 + i i ( 1 + i ) i 2 ln i + 3 i 2 i 3 i 2 ) = ln 3 \frac{4}{1+2i}\int_1^i \frac{du}{(u+\frac{2+i}{5})^2+(\frac{2}{5}(2+i))^2}=-2i\Big[\arctan(\frac{u(2-i)+1}{2})\Big]_1^i=-2i\Big(\arctan(1+i)-\arctan(\frac{3-i}{2})\Big)=-2i\Big(\frac{i}{2}\ln{\frac{i+1+i}{i-(1+i)}}-\frac{i}{2}\ln{\frac{i+\frac{3-i}{2}}{i-\frac{3-i}{2}}}\Big)=\ln{3} . So, the combined answer is ln 2 ln 3 + ln 3 = ln 2 \ln{2}-\ln{3}+\ln{3}=\ln{2} . \ Here's another solution to 0 π / 2 2 1 + sin x + 2 cos x d x \int_0^{\pi/2} \frac{2}{1+\sin{x}+2\cos{x}}dx using the so-called Weierstrass substitution ( t = tan x 2 t=\tan{\frac{x}{2}} ). Recall that with the Weierstrass substitution, cos x = 1 t 2 1 + t 2 \cos{x}=\frac{1-t^2}{1+t^2} , sin x = 2 t 1 t 2 \sin{x}=\frac{2t}{1-t^2} , and d x = 2 1 + t 2 d t dx=\frac{2}{1+t^2}dt . Substituting these into the integral, I get 0 1 2 1 + 2 t 1 + t 2 + 2 1 t 2 1 + t 2 2 1 + t 2 d t = 0 1 4 t 2 + 2 t + 3 d t \int_0^1 \frac{2}{1+\frac{2t}{1+t^2}+2\frac{1-t^2}{1+t^2}}\frac{2}{1+t^2}dt=\int_0^1\frac{4}{-t^2+2t+3}dt = 0 1 1 t + 3 + 1 t + 1 d t = [ ln ( t + 3 ) + ln t + 1 ] 0 1 = ln 2 + ln 2 + ln 3 ln 1 = ln 3 =\int_0^1\frac{1}{-t+3}+\frac{1}{t+1}dt=\Big[-\ln{(-t+3)}+\ln{t+1}\Big]_0^1=-\ln{2}+\ln{2}+\ln{3}-\ln{1}=\ln{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...