⌊ 1 0 0 0 ∫ 0 2 π 1 + sin x + 2 cos x 2 − 2 sin x + cos x d x ⌋ = ?
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have ∫ 0 2 1 π 1 + sin x + 2 cos x 2 d x = ∫ 0 2 1 π 1 + cos x + 2 sin x 2 d x = ∫ 0 2 1 π cos 2 2 1 x + 2 sin 2 1 x cos 2 1 x d x = ∫ 0 2 1 π 1 + 2 tan 2 1 x sec 2 2 1 x d x = [ ln ( 1 + 2 tan 2 1 x ) ] 0 2 1 π = ln 3 while ∫ 0 2 1 π 1 + sin x + 2 cos x − 2 sin x + cos x d x = [ ln ( 1 + sin x + 2 cos x ) ] 0 2 1 π = ln 3 2 Adding these together, the desired integral is ln 2 , making the answer ⌊ 1 0 0 0 ln 2 ⌋ = 6 9 3 .
H.M. and Mark Hennings had much better solutions than mine (and more creative as well), but I'll post mine anyway... I separated the fraction the same way Mark did. One of those integrals, namely, ∫ 0 2 π 1 + sin x + 2 cos x − 2 sin x + cos x d x was straightforward to compute, as the numerator was simply the derivative of the denominator. Its value is ln 2 − ln 3 . I will be spending more time on ∫ 0 2 π 1 + sin x + 2 cos x 2 d x . I let u = e i x . This leads to ∫ 1 i 1 + 2 i 1 − u 1 + 2 2 u + u 1 2 i u d u . Skipping some steps, this can be manipulated into 1 + 2 i 4 ∫ 1 i ( u + 5 2 + i ) 2 + ( 5 2 ( 2 + i ) ) 2 d u = − 2 i [ arctan ( 2 u ( 2 − i ) + 1 ) ] 1 i = − 2 i ( arctan ( 1 + i ) − arctan ( 2 3 − i ) ) = − 2 i ( 2 i ln i − ( 1 + i ) i + 1 + i − 2 i ln i − 2 3 − i i + 2 3 − i ) = ln 3 . So, the combined answer is ln 2 − ln 3 + ln 3 = ln 2 . Here's another solution to ∫ 0 π / 2 1 + sin x + 2 cos x 2 d x using the so-called Weierstrass substitution ( t = tan 2 x ). Recall that with the Weierstrass substitution, cos x = 1 + t 2 1 − t 2 , sin x = 1 − t 2 2 t , and d x = 1 + t 2 2 d t . Substituting these into the integral, I get ∫ 0 1 1 + 1 + t 2 2 t + 2 1 + t 2 1 − t 2 2 1 + t 2 2 d t = ∫ 0 1 − t 2 + 2 t + 3 4 d t = ∫ 0 1 − t + 3 1 + t + 1 1 d t = [ − ln ( − t + 3 ) + ln t + 1 ] 0 1 = − ln 2 + ln 2 + ln 3 − ln 1 = ln 3 .
Problem Loading...
Note Loading...
Set Loading...
Note that ( 1 + sin x ) ( 1 − sin x ) = cos 2 x .
Then 1 + sin x cos x = 2 cos x 2 − 2 sin x = 1 + sin x + 2 cos x 2 − 2 sin x + cos x , by using componendo .
Therefore, 1 + sin x + 2 cos x 2 − 2 sin x + cos x = 1 + sin x cos x .
Let 1 + sin x = t , then cos x d x = d t .
∴ ⌊ 1 0 0 0 ∫ 0 2 π 1 + sin x + 2 cos x 2 − 2 sin x + cos x d x ⌋ = ⌊ 1 0 0 0 ∫ 0 2 π 1 + sin x cos x d x ⌋ = ⌊ 1 0 0 0 ∫ 1 2 t 1 d t ⌋ = ⌊ 1 0 0 0 [ ln ∣ t ∣ ] 1 2 ⌋ = ⌊ 1 0 0 0 ln 2 ⌋ = 6 9 3 .