Trigonomean

Algebra Level 5

The Power Mean Inequality is a classical result that compares the arithmetic mean ( f A M f_{AM} ), the geometric mean ( f G M f_{GM} ), the quadratic mean ( f Q M f_{QM} ) and the harmonic mean ( f H M f_{HM} ) of a list of positive numbers :

f Q M f A M f G M f H M f_{QM} \geq f_{AM} \geq f_{GM} \geq f_{HM}

Let's define the trigonometric mean of two positive real numbers x , y x,y such that x y > 1 xy >1 as :

f T M ( x , y ) = 1 + 1 + g 2 ( x , y ) g ( x , y ) f_{TM}(x,y)=-\frac{1+\sqrt{1+g^2(x,y)}}{g(x,y)} where : g ( x , y ) = tan ( tan 1 ( x ) + tan 1 ( y ) ) g(x,y) = \tan(\tan^{-1}(x)+\tan^{-1}(y))

What is the generalization of the Power Mean Inequality on x , y x,y that would include the trigonometric mean ?

f T M f Q M f A M f G M f H M f_{TM} \geq f_{QM} \geq f_{AM} \geq f_{GM} \geq f_{HM} f Q M f T M f A M f G M f H M f_{QM} \geq f_{TM} \geq f_{AM} \geq f_{GM} \geq f_{HM} f Q M f A M f G M f H M f T M f_{QM} \geq f_{AM} \geq f_{GM} \geq f_{HM} \geq f_{TM} f Q M f A M f G M f T M f H M f_{QM} \geq f_{AM} \geq f_{GM} \geq f_{TM} \geq f_{HM} f Q M f A M f T M f G M f H M f_{QM} \geq f_{AM} \geq f_{TM} \geq f_{GM} \geq f_{HM} Impossible to generalize

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jul 18, 2018

Using the tangent addition formula, g ( x , y ) = tan ( tan 1 ( x ) + tan 1 ( y ) ) g(x, y) = \tan(\tan^{-1}(x) + \tan^{-1}(y)) = = tan ( tan 1 ( x ) ) + tan ( tan 1 ( y ) ) 1 tan ( tan 1 ( x ) ) tan ( tan 1 ( y ) ) \frac{\tan(\tan^{-1}(x)) + \tan(\tan^{-1}(y))}{1 - \tan(\tan^{-1}(x))\tan(\tan^{-1}(y))} = = x + y 1 x y \frac{x + y}{1 - xy} .

Therefore, f T M ( x , y ) = 1 + 1 + g 2 ( x , y ) g ( x , y ) f_{TM}(x, y) = -\frac{1+\sqrt{1+g^2(x,y)}}{g(x,y)} = = 1 + 1 + ( x + y 1 x y ) 2 x + y 1 x y -\frac{1+\sqrt{1+(\frac{x + y}{1 - xy})^2}}{\frac{x + y}{1 - xy}} which simplifies to f T M ( x , y ) = x y 1 + x 2 y 2 + x 2 + y 2 + 1 x + y f_{TM}(x, y) = \frac{xy - 1 + \sqrt{x^2y^2 + x^2 + y^2 + 1}}{x + y} .


Now f Q M f G M f_{QM} \geq f_{GM} , so for two positive real numbers x x and y y , x 2 + y 2 2 x y \sqrt{\frac{x^2 + y^2}{2}} \geq \sqrt{xy} . Then if x y > 1 xy > 1 ,

x 2 + y 2 2 x y \sqrt{\frac{x^2 + y^2}{2}} \geq \sqrt{xy}

x 2 + y 2 2 x y \frac{x^2 + y^2}{2} \geq xy

x 2 + y 2 2 x y x^2 + y^2 \geq 2xy

x 2 y 2 + x 2 + y 2 + 1 x 2 y 2 + 2 x y + 1 x^2y^2 + x^2 + y^2 + 1 \geq x^2y^2 + 2xy + 1

x 2 y 2 + x 2 + y 2 + 1 ( x y + 1 ) 2 x^2y^2 + x^2 + y^2 + 1 \geq (xy + 1)^2

x 2 y 2 + x 2 + y 2 + 1 x y + 1 \sqrt{x^2y^2 + x^2 + y^2 + 1} \geq xy + 1

x y + x 2 y 2 + x 2 + y 2 + 1 2 x y + 1 xy + \sqrt{x^2y^2 + x^2 + y^2 + 1} \geq 2xy + 1

x y 1 + x 2 y 2 + x 2 + y 2 + 1 2 x y xy - 1 + \sqrt{x^2y^2 + x^2 + y^2 + 1} \geq 2xy

x y 1 + x 2 y 2 + x 2 + y 2 + 1 x + y 2 x y x + y \frac{xy - 1 + \sqrt{x^2y^2 + x^2 + y^2 + 1}}{x + y} \geq \frac{2xy}{x + y}

x y 1 + x 2 y 2 + x 2 + y 2 + 1 x + y 2 1 x + 1 y \frac{xy - 1 + \sqrt{x^2y^2 + x^2 + y^2 + 1}}{x + y} \geq \frac{2}{\frac{1}{x} + \frac{1}{y}}

f T M f H M f_{TM} \geq f_{HM}


Also, f A M f G M f_{AM} \geq f_{GM} , so for two positive real numbers x x and y y , x + y 2 x y \frac{x + y}{2} \geq \sqrt{xy} . Then if x y > 1 xy > 1 ,

x + y 2 x y \frac{x + y}{2} \geq \sqrt{xy}

x + y 2 x y x + y \geq 2\sqrt{xy}

( x + y ) ( x y 1 ) 2 x y ( x y 1 ) (x + y)(xy - 1) \geq 2\sqrt{xy}(xy - 1)

x y ( x + y ) ( x + y ) 2 x y x y 2 x y xy(x + y) - (x + y) \geq 2xy\sqrt{xy} - 2\sqrt{xy}

x y ( x + y ) ( x + y ) ( x + y ) ( x + y ) 2 x y x y ( x + y ) 2 x y ( x + y ) xy(x + y)(x + y) - (x + y)(x + y) \geq 2xy\sqrt{xy}(x + y) - 2\sqrt{xy}(x + y)

x y ( x + y ) 2 ( x + y ) 2 2 x y x y ( x + y ) 2 x y ( x + y ) xy(x + y)^2 - (x + y)^2 \geq 2xy\sqrt{xy}(x + y) - 2\sqrt{xy}(x + y)

x y ( x + y ) 2 2 x y x y ( x + y ) + 2 x y ( x + y ) ( x + y ) 2 xy(x + y)^2 - 2xy\sqrt{xy}(x + y) + 2\sqrt{xy}(x + y) \geq (x + y)^2

x y ( x 2 + 2 x y + y 2 2 x x y 2 y x y ) + 2 x y ( x + y ) x 2 + 2 x y + y 2 xy(x^2 + 2xy + y^2 - 2x\sqrt{xy} - 2y\sqrt{xy}) + 2\sqrt{xy}(x + y) \geq x^2 + 2xy + y^2

x y ( x 2 + 2 x y + y 2 2 x x y 2 y x y ) + 2 x y ( x + y ) 2 x y x 2 + y 2 xy(x^2 + 2xy + y^2 - 2x\sqrt{xy} - 2y\sqrt{xy}) + 2\sqrt{xy}(x + y) - 2xy \geq x^2 + y^2

x y ( x 2 + 2 x y + y 2 2 x x y 2 y x y ) + 2 x y ( x + y ) 2 x y x y x 2 + y 2 xy(x^2 + 2xy + y^2 - 2x\sqrt{xy} - 2y\sqrt{xy}) + 2\sqrt{xy}(x + y) - 2\sqrt{xy}\sqrt{xy} \geq x^2 + y^2

x y ( x 2 + 2 x y + y 2 2 x x y 2 y x y ) + 2 x y ( x + y x y ) x 2 + y 2 xy(x^2 + 2xy + y^2 - 2x\sqrt{xy} - 2y\sqrt{xy}) + 2\sqrt{xy}(x + y - \sqrt{xy}) \geq x^2 + y^2

x 2 y 2 + x y ( x 2 + 2 x y + y 2 2 x x y 2 y x y ) + 2 x y ( x + y x y ) + 1 x 2 y 2 + x 2 + y 2 + 1 x^2y^2 + xy(x^2 + 2xy + y^2 - 2x\sqrt{xy} - 2y\sqrt{xy}) + 2\sqrt{xy}(x + y - \sqrt{xy}) + 1 \geq x^2y^2 + x^2 + y^2 + 1

x y ( x 2 + 3 x y + y 2 2 x x y 2 y x y ) + 2 x y ( x + y x y ) + 1 x 2 y 2 + x 2 + y 2 + 1 xy(x^2 + 3xy + y^2 - 2x\sqrt{xy} - 2y\sqrt{xy}) + 2\sqrt{xy}(x + y - \sqrt{xy}) + 1 \geq x^2y^2 + x^2 + y^2 + 1

x y ( x + y x y ) 2 + 2 x y ( x + y x y ) + 1 x 2 y 2 + x 2 + y 2 + 1 xy(x + y - \sqrt{xy})^2 + 2\sqrt{xy}(x + y - \sqrt{xy}) + 1 \geq x^2y^2 + x^2 + y^2 + 1

( x y ( x + y x y ) + 1 ) 2 x 2 y 2 + x 2 + y 2 + 1 (\sqrt{xy}(x + y - \sqrt{xy}) + 1)^2 \geq x^2y^2 + x^2 + y^2 + 1

x y ( x + y x y ) + 1 x 2 y 2 + x 2 + y 2 + 1 \sqrt{xy}(x + y - \sqrt{xy}) + 1 \geq \sqrt{x^2y^2 + x^2 + y^2 + 1}

x y ( x + y ) x y + 1 x 2 y 2 + x 2 + y 2 + 1 \sqrt{xy}(x + y) - xy + 1 \geq \sqrt{x^2y^2 + x^2 + y^2 + 1}

x y ( x + y ) x y 1 + x 2 y 2 + x 2 + y 2 + 1 \sqrt{xy}(x + y) \geq xy - 1 + \sqrt{x^2y^2 + x^2 + y^2 + 1}

x y x y 1 + x 2 y 2 + x 2 + y 2 + 1 x + y \sqrt{xy} \geq \frac{xy - 1 + \sqrt{x^2y^2 + x^2 + y^2 + 1}}{x + y}

f G M f T M f_{GM} \geq f_{TM}


Since f G M f T M f_{GM} \geq f_{TM} and f T M f H M f_{TM} \geq f_{HM} , and f Q M f A M f G M f H M f_{QM} \geq f_{AM} \geq f_{GM} \geq f_{HM} , f Q M f A M f G M f T M f H M \boxed{f_{QM} \geq f_{AM} \geq f_{GM} \geq f_{TM} \geq f_{HM}} .

Did same here but it was really a long process.

D K - 2 years, 10 months ago

Wow, looks like a scary process...

Kelvin Hong - 2 years, 10 months ago

Log in to reply

Ya,But once started the flow then it is just the maths.

D K - 2 years, 10 months ago
Zoki Kuzmanovski
Jul 26, 2018

Well actially if you are a genius problem solver you can solve this really quickly without solving it mathematically. You just go by pin-pointing by similarity, out of possible answers formulated as abcde abdce adcbe abdec adcbe you have most primary similarities three, then you cut of from there ABdec, ABcde, ABdce and you eliminate by separating secondary similarities Dec and Dce, then because there is only two and only a switch between terms you don't have anymore to separate so you use an algorithm by noticing in the previous answers which term is most interchanged and never repeats or mrepeats less than the other comparative term (E) on the same spot for instance if C never repeats on the same spot and always interchanges it will be Ce, but if both C and E repeat on same locations you just count which one repeats on less locations over the ratio of those groups entering primary, secondary phases.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...