Trigonometric Algebra

Geometry Level 4

Evaluate 16 k = 1 4 cos 2 k 1 16 \displaystyle \prod _{ k=1 }^{ 4 }{ \cos { { 2 }^{ k-1 } } } first. If one were to express the answer as sin A csc B \sin { A } \csc { B } , evaluate A B \frac { A }{ B } where A and B are coprime.

NOTE: The value of A B \frac { A }{ B } is what you'll put in the answer box, not 16 k = 1 4 cos 2 k 1 16\prod _{ k=1 }^{ 4 }{ \cos { { 2 }^{ k-1 } } } !

NOTE 2: Angles are measured in radians, not in degrees!!


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Min-woo Lee
Sep 25, 2014

Our equation, 16 k = 1 4 cos 2 k 1 16\prod _{ k=1 }^{ 4 }{ \cos { { 2 }^{ k-1 } } } , is 16 cos 1 cos 2 cos 4 cos 8 16\cos { 1 } \cos { 2 } \cos { 4 } \cos { 8 } .

Let this be S S . Multiply both side by sin 1 \sin { 1 } . So that it would be sin 1 16 cos 1 cos 2 cos 4 cos 8 = S sin 1 \sin { 1 } \cdot 16\cos { 1 } \cos { 2 } \cos { 4 } \cos { 8 } =S\sin { 1 } .

But we know that, 2 sin C cos C = sin 2 C 2\sin { C } \cos { C } =\sin { 2C } from basic trigonometric identity. Which means that 2 sin 1 cos 1 = sin 2 2\sin { 1 } \cos { 1 } =\sin { 2 } .

So, sin 1 16 cos 1 cos 2 cos 4 cos 8 = 8 sin 2 cos 2 cos 4 cos 8 \sin { 1 } \cdot 16\cos { 1 } \cos { 2 } \cos { 4 } \cos { 8 } =8\sin { 2 } \cos { 2 } \cos { 4 } \cos { 8 } .

But then again, 2 sin 2 cos 2 = sin 4 2\sin { 2 } \cos { 2 } =\sin { 4 } . Therefore

8 sin 2 cos 2 cos 4 cos 8 = 4 sin 4 cos 4 cos 8 = 2 sin 8 cos 8 = sin 16 8\sin { 2 } \cos { 2 } \cos { 4 } \cos { 8 } =4\sin { 4 } \cos { 4 } \cos { 8 } =2\sin { 8 } \cos { 8 } =\sin { 16 } .

So we conclude that S sin 1 = sin 16 S\sin { 1 } =\sin { 16 } . Divide both sides by sin 1 \sin { 1 } , we get S = sin 16 sin 1 S=\frac { \sin { 16 } }{ \sin { 1 } } .

But csc C = 1 sin C \csc { C } =\frac { 1 }{ \sin { C } } . Therefore, S = sin 16 csc 1 S=\sin { 16 } \csc { 1 } . From this, we evaluate A to be 16 and B to be 1. Answer is 16.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...