sin 2 ( 3 ∘ ) + sin 2 ( 9 ∘ ) + sin 2 ( 1 5 ∘ ) + … + sin 2 ( 1 7 7 ∘ ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There is typo at sin square theta. It must be cos2theta. I see new idea from your answer, thanks
In general, we have sin 2 ( x ∘ + 9 0 ∘ ) = cos 2 x ∘ . Well, our sum can be written as follows:
sin 2 ( 3 ∘ ) + sin 2 ( 9 3 ∘ )
+ sin 2 ( 9 ∘ ) + sin 2 ( 9 9 ∘ )
+ …
+ sin 2 ( 8 7 ∘ ) + sin 2 ( 1 7 7 ∘ )
= sin 2 ( 3 ∘ ) + cos 2 ( 3 ∘ )
+ sin 2 ( 9 ∘ ) + cos 2 ( 9 ∘ )
+ …
+ sin 2 ( 8 7 ∘ ) + cos 2 ( 8 7 ∘ )
= 1 5 ,
counting the terms and using the classic formula cos 2 x + sin 2 x = 1 .
e^(i x)=cosx + i sinx e^(-i x)=cosx-i sinx sinx=(e^(i x)-e^(-i x))/(2*i)
Killing a fly with a canon is at the same time unnecessary and effective. See that it forms a geometric progression and done. P.S:I know it isn’t the most eloquent of solutions
The angles follows the patterns : 6x -3 So the sum can be written as 2(sin^2 (3°) + sin^2 (9°) + . ...+ sin^2 (87°)) = 2(7) + 2sin^2 45°= 15
Problem Loading...
Note Loading...
Set Loading...
S = sin 2 3 ∘ + sin 2 9 ∘ + sin 2 1 5 ∘ + ⋯ + sin 2 1 6 5 ∘ + sin 2 1 7 1 ∘ + sin 2 1 7 7 ∘ = sin 2 3 ∘ + sin 2 9 ∘ + sin 2 1 5 ∘ + ⋯ + sin 2 1 5 ∘ + sin 2 9 ∘ + sin 2 3 ∘ = 2 15 terms ( sin 2 3 ∘ + sin 2 9 ∘ + sin 2 1 5 ∘ + ⋯ + sin 2 8 7 ∘ ) = 1 5 − ( cos 6 ∘ + cos 1 8 ∘ + cos 3 0 ∘ + ⋯ + cos 1 7 4 ∘ ) Note: sin ( 1 8 0 ∘ − θ ) = sin θ Note: sin 2 θ = 2 1 ( 1 − cos θ ) Note: cos ( 1 8 0 ∘ − θ ) = − cos θ
= 1 5 − ( cos 6 ∘ + cos 1 8 ∘ + cos 3 0 ∘ + ⋯ + cos 9 0 ∘ + ⋯ − cos 3 0 ∘ − cos 1 8 ∘ − cos 6 ∘ ) = 1 5