Trigonometry

Geometry Level 3

sin 2 ( 3 ) + sin 2 ( 9 ) + sin 2 ( 1 5 ) + + sin 2 ( 17 7 ) = ? \large \sin^2 ({3}^\circ) + \sin^2 (9^\circ) + \sin^2 (15^\circ) + \ldots + \sin^2 (177^\circ) = ?

Inspiration


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 26, 2017

S = sin 2 3 + sin 2 9 + sin 2 1 5 + + sin 2 16 5 + sin 2 17 1 + sin 2 17 7 Note: sin ( 18 0 θ ) = sin θ = sin 2 3 + sin 2 9 + sin 2 1 5 + + sin 2 1 5 + sin 2 9 + sin 2 3 = 2 ( sin 2 3 + sin 2 9 + sin 2 1 5 + + sin 2 8 7 ) 15 terms Note: sin 2 θ = 1 2 ( 1 cos θ ) = 15 ( cos 6 + cos 1 8 + cos 3 0 + + cos 17 4 ) Note: cos ( 18 0 θ ) = cos θ \begin{aligned} S & = \sin^2 3^\circ + \sin^2 9^\circ + \sin^2 15^\circ + \cdots + \sin^2 165^\circ + \sin^2 171^\circ + \sin^2 177^\circ & \small \color{#3D99F6} \text{Note: } \sin (180^\circ - \theta) = \sin \theta \\ & = \sin^2 3^\circ + \sin^2 9^\circ + \sin^2 15^\circ + \cdots + \sin^2 15^\circ + \sin^2 9^\circ + \sin^2 3^\circ \\ & = 2 \underbrace{\left( \sin^2 3^\circ + \sin^2 9^\circ + \sin^2 15^\circ + \cdots + \sin^2 87^\circ\right)}_{\text{15 terms}} & \small \color{#3D99F6} \text{Note: } \sin^2 \theta = \frac 12 (1-\cos \theta) \\ & = 15 - \left( \cos 6^\circ + \cos 18^\circ + \cos 30^\circ + \cdots + \cos 174^\circ\right) & \small \color{#3D99F6} \text{Note: } \cos (180^\circ - \theta) = - \cos \theta \end{aligned}

= 15 ( cos 6 + cos 1 8 + cos 3 0 + + cos 9 0 + cos 3 0 cos 1 8 cos 6 ) = 15 \begin{aligned} \ \ \ & = 15 - \left( \cos 6^\circ + \cos 18^\circ + \cos 30^\circ + \cdots + \cos 90^\circ + \cdots - \cos 30^\circ - \cos 18^\circ - \cos 6^\circ\right) \\ & = \boxed{15} \end{aligned}

There is typo at sin square theta. It must be cos2theta. I see new idea from your answer, thanks

Alfa Claresta - 3 years, 6 months ago
Bob Bob
Oct 7, 2017

In general, we have sin 2 ( x + 9 0 ) = cos 2 x \displaystyle \sin^2 \left(x^{\circ} + 90^{\circ} \right) = \cos^2 x^{\circ} . Well, our sum can be written as follows:

sin 2 ( 3 ) + sin 2 ( 9 3 ) \displaystyle \sin^2 \left(3^{\circ} \right) + \sin^2 \left(93^{\circ} \right)

+ sin 2 ( 9 ) + sin 2 ( 9 9 ) \displaystyle + \sin^2 \left(9^{\circ} \right) + \sin^2 \left(99^{\circ} \right)

+ \displaystyle + \dots \

+ sin 2 ( 8 7 ) + sin 2 ( 17 7 ) \displaystyle + \sin^2 \left(87^{\circ} \right) + \sin^2 \left(177^{\circ} \right)

= sin 2 ( 3 ) + cos 2 ( 3 ) \displaystyle = \sin^2 \left(3^{\circ} \right) + \cos^2 \left(3^{\circ} \right)

+ sin 2 ( 9 ) + cos 2 ( 9 ) \displaystyle + \sin^2 \left(9^{\circ} \right) + \cos^2 \left(9^{\circ} \right)

+ \displaystyle + \dots \

+ sin 2 ( 8 7 ) + cos 2 ( 8 7 ) \displaystyle + \sin^2 \left(87^{\circ} \right) + \cos^2 \left(87^{\circ} \right)

= 15 \displaystyle = 15 ,

counting the terms and using the classic formula cos 2 x + sin 2 x = 1 \displaystyle \cos^2 x + \sin^2 x = 1 .

Roberto Gomide
Dec 6, 2017

e^(i x)=cosx + i sinx e^(-i x)=cosx-i sinx sinx=(e^(i x)-e^(-i x))/(2*i)

Killing a fly with a canon is at the same time unnecessary and effective. See that it forms a geometric progression and done. P.S:I know it isn’t the most eloquent of solutions

Rab Gani
Oct 5, 2017

The angles follows the patterns : 6x -3 So the sum can be written as 2(sin^2 (3°) + sin^2 (9°) + . ...+ sin^2 (87°)) = 2(7) + 2sin^2 45°= 15

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...