Trigonometric Bases

Geometry Level 4

Archeologists have recently discovered evidence that the fictitious lost civilization of Brilliantica used a type of trigonometric ratio that used triangles with 60 ° 60° angles and 120 ° 120° angles instead of 90 ° 90° angles. For example, for A B C \triangle ABC below, where C C is a 60 ° 60° angle, sin 60 ° A = a c \sin_{60°} A = \frac{a}{c} , cos 60 ° A = b c \cos_{60°} A = \frac{b}{c} , tan 60 ° A = a b \tan_{60°} A = \frac{a}{b} , sin 60 ° B = b c \sin_{60°} B = \frac{b}{c} , cos 60 ° B = a c \cos_{60°} B = \frac{a}{c} , and tan 60 ° B = b a \tan_{60°} B = \frac{b}{a} .

Likewise, for D E F \triangle DEF below, where F F is a 120 ° 120° angle, sin 120 ° D = d f \sin_{120°} D = \frac{d}{f} , cos 120 ° D = e f \cos_{120°} D = \frac{e}{f} , tan 120 ° D = d e \tan_{120°} D = \frac{d}{e} , sin 120 ° E = e f \sin_{120°} E = \frac{e}{f} , cos 120 ° E = d f \cos_{120°} E = \frac{d}{f} , and tan 120 ° E = e d \tan_{120°} E = \frac{e}{d} .

What can cos 60 ° 3 x + cos 120 ° 3 x \cos_{60°}^3 x + \cos_{120°}^3 x (for 0 < x < 60 ° 0 < x < 60° ) be simplified to?

1 1 cos 60 ° x + cos 120 ° x \cos_{60°} x + \cos_{120°} x 2 cos 120 ° 3 x 2\cos_{120°}^3 x 2 cos 60 ° 3 x 2\cos_{60°}^3 x cos 60 ° x cos 120 ° x \cos_{60°} x - \cos_{120°} x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 14, 2019

Let the Brilliantica's hypotenuse A B = 1 AB=1 , then cos 6 0 x = A D \cos_{60^\circ} x = AD and cos 12 0 x = A C \cos_{120^\circ} x = AC . We note that B C D \triangle BCD is equilateral. Since B E = sin x BE = \sin x , B C = C D = D B = 2 3 sin x BC=CD=DB=\frac 2{\sqrt 3}\sin x and C E = E D = 1 3 sin x CE=ED = \frac 1{\sqrt 3}\sin x . Then we have:

{ cos 6 0 x = A D = A E + E D = cos x + sin x 3 cos 12 0 x = A C = A E C E = cos x sin x 3 \begin{cases} \cos_{60^\circ} x = AD = AE+ED = \cos x + \dfrac {\sin x}{\sqrt 3} \\ \cos_{120^\circ} x = AC = AE-CE = \cos x - \dfrac {\sin x}{\sqrt 3} \end{cases}

Then cos 6 0 x + cos 12 0 x = 2 cos x \color{#3D99F6} \cos_{60^\circ} x + \cos_{120^\circ} x = 2\cos x . Now we have:

cos 6 0 3 x + cos 12 0 3 x = ( cos x + sin x 3 ) 3 + ( cos x sin x 3 ) 3 = 2 cos 3 x + 2 sin 2 x cos x = 2 cos x ( cos 2 x + sin 2 x ) = 2 cos x = cos 6 0 x + cos 12 0 x \begin{aligned} \cos^3_{60^\circ} x + \cos^3_{120^\circ} x & = \left(\cos x + \frac {\sin x}{\sqrt 3}\right)^3 + \left(\cos x - \frac {\sin x}{\sqrt 3}\right)^3 \\ & = 2 \cos^3 x + 2 \sin^2 x \cos x \\ & = 2\cos x \left(\cos^2 x + \sin^2 x\right) \\ & = \color{#3D99F6} 2\cos x \\ & = \boxed{\color{#3D99F6}\cos_{60^\circ} x + \cos_{120^\circ} x} \end{aligned}

Nice approach! Thanks for sharing your solution!

David Vreken - 2 years, 3 months ago
David Vreken
Feb 15, 2019

Let A = x \angle A = x , C = 60 ° \angle C = 60° , and c = 1 c = 1 . Then a = sin 60 ° x a = \sin_{60°} x and b = cos 60 ° x b = \cos_{60°} x , and by law of cosines, sin 60 ° 2 x sin 60 ° x cos 60 ° x + cos 60 ° 2 x = 1 \sin_{60°}^2 x - \sin_{60°} x \cos_{60°} x + \cos_{60°}^2 x = 1 , so cos 60 ° 3 x + sin 60 ° 3 x = ( cos 60 ° x + sin 60 ° x ) ( sin 60 ° 2 x sin 60 ° x cos 60 ° x + cos 60 ° 2 x ) = cos 60 ° x + sin 60 ° x \cos_{60°}^3 x + \sin_{60°}^3 x = (\cos_{60°} x + \sin_{60°} x)(\sin_{60°}^2 x - \sin_{60°} x \cos_{60°} x + \cos_{60°}^2 x) = \cos_{60°} x + \sin_{60°} x .

Let A = x \angle A = x , C = 120 ° \angle C’ = 120° , and c = 1 c = 1 . Then a = sin 120 ° x a’ = \sin_{120°} x and b = cos 120 ° x b’ = \cos_{120°} x , and by law of cosines, sin 120 ° 2 x + sin 120 ° x cos 120 ° x + cos 120 ° 2 x = 1 \sin_{120°}^2 x + \sin_{120°} x \cos_{120°} x + \cos_{120°}^2 x = 1 , so cos 60 ° 3 x sin 60 ° 3 x = ( cos 60 ° x sin 60 ° x ) ( sin 60 ° 2 x + sin 60 ° x cos 60 ° x + cos 60 ° 2 x ) = cos 60 ° x sin 60 ° x \cos_{60°}^3 x - \sin_{60°}^3 x = (\cos_{60°} x - \sin_{60°} x)(\sin_{60°}^2 x + \sin_{60°} x \cos_{60°} x + \cos_{60°}^2 x) = \cos_{60°} x - \sin_{60°} x .

Also, a a and a a’ are sides of an equilateral triangle, so a = a a = a’ or sin 60 ° x = sin 120 ° x \sin_{60°} x = \sin_{120°} x .

Therefore,

cos 60 ° 3 x + cos 120 ° 3 x \cos_{60°}^3 x + \cos_{120°}^3 x

= = cos 60 ° 3 x + sin 60 ° 3 x + cos 120 ° 3 x sin 120 ° 3 x \cos_{60°}^3 x + \sin_{60°}^3 x + \cos_{120°}^3 x - \sin_{120°}^3 x

= = cos 60 ° x + sin 60 ° x + cos 120 ° x sin 120 ° x \cos_{60°} x + \sin_{60°} x + \cos_{120°} x - \sin_{120°} x

= = cos 60 ° x + cos 120 ° x \boxed{\cos_{60°} x + \cos_{120°} x} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...