Trigonometric Conversion

Geometry Level pending

The expression 4 cos x + 3 sin x 4\cos { x } +3\sin { x } can be converted to the form C cos ( x θ ) C\cos { (x - \theta ) } . Give the value for C + θ C + \theta .

Give your answer correct to 2 decimal places. Restrict your answer to 0 θ π 2 0\le \theta \le \frac { \pi }{ 2 } in radians.


The answer is 5.64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Geoff Taylor
Dec 24, 2017

Process to convert A cos x + B sin x to C cos (x - θ \theta )

C = A 2 + B 2 , A C = cos θ , B C = sin θ C=\sqrt { { A }^{ 2 }+{ B }^{ 2 } } , \frac { A }{ C } =\cos { \theta } ,\quad \frac { B }{ C } =\sin { \theta }

A c o s x + B s i n x = C ( A C c o s x + B C s i n x ) Acosx\quad +Bsinx\quad =C(\frac { A }{ C } cosx+\frac { B }{ C } sinx)

= C ( c o s θ c o s x + s i n θ s i n x ) = C ( c o s x c o s θ + s i n x s i n θ ) C(cos\theta cos x +sin \theta sin x)=C(cos xcos \theta +sin xsin \theta ) = C c o s ( x θ ) Ccos(x-\theta )

so in this example A = 4, B = 3 and C = 5

θ = sin 1 3 5 0.64 \theta =\sin ^{ -1 }{ \frac { 3 }{ 5 } } \approx 0.64

Thus C + θ 5.64 C+\theta \quad \approx 5.64

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...