Trigonometric functions have got large powers!

Geometry Level 5

Define F n ( x ) = k = 1 n ( sin 2 k x + cos 2 k x ) F_n(x) = \prod_{k=1}^n (\sin^{2^k} x+\cos^{2^k} x)

If F 2015 ( π 6 ) = a 2 b 1 1 c 2 b 1 \text{If}\ F_{2015}\left(\frac{\pi}{6}\right) = \frac{a^{2^{b-1}}-1}{c^{2^b-1}}

Then find the value of a + b + c a+b+c .

Clarification

  • The power of a a in numerator is 2 b 1 2^{b-1} whereas the power of c c in denominator is 2 b 1 2^b-1

  • a , b , c a,\ b,\ c are positive integers.


The answer is 2021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kishlaya Jaiswal
Mar 1, 2015

First, we try to simplify the given expression. (Although, you can substitute back the values of sin π 6 \sin \frac{\pi}{6} and cos π 6 \cos \frac{\pi}{6} to make your work easier) but I'll present a general solution.

Multiplying the expression by cos 2 x sin 2 x \cos^2x-\sin^2x , to simplify it as follows :

F n ( x ) ( cos 2 x sin 2 x ) = ( cos 2 x sin 2 x ) k = 1 n ( cos 2 n x + sin 2 n x ) F n ( x ) cos 2 x = ( cos 2 x sin 2 x ) ( cos 2 x + sin 2 x ) ( cos 4 x + sin 4 x ) ( cos 2 n x + sin 2 n x ) = ( cos 4 x sin 4 x ) ( cos 4 x + sin 4 x ) ( cos 2 n x + sin 2 n x ) = ( cos 8 x sin 8 x ) ( cos 8 x + sin 8 x ) ( cos 2 n x + sin 2 n x ) . . . = ( cos 2 n + 1 x sin 2 n + 1 x ) \begin{aligned} F_n(x)(\cos^2x-\sin^2x) &= & (\cos^2 x-\sin^2 x) \prod_{k=1}^n (\cos^{2^n}x + \sin^{2^n}x) \\ F_n(x)\cos 2x & = & (\cos^2 x-\sin^2 x)(\cos^2 x+\sin^2 x)(\cos^4 x+\sin^4 x) \ldots (\cos^{2^n} x+\sin^{2^n} x) \\ & = & (\cos^4 x-\sin^4 x)(\cos^4 x+\sin^4 x) \ldots (\cos^{2^n} x+\sin^{2^n} x) \\ & = & (\cos^8 x-\sin^8 x)(\cos^8 x+\sin^8 x) \ldots (\cos^{2^n} x+\sin^{2^n} x) \\ & & . \\ & & . \\ & & . \\ & = & (\cos^{2^{n+1}} x - \sin^{2^{n+1}} x) \\ \end{aligned}

Thus, F n ( x ) = cos 2 n + 1 x sin 2 n + 1 x cos 2 x F_n(x) = \frac{\cos^{2^{n+1}} x -\sin^{2^{n+1}} x}{\cos 2x}

We need to compute F 2015 ( π 6 ) F_{2015}\left(\frac{\pi}{6}\right)

F 2015 ( π 6 ) = cos 2 2016 ( π 6 ) sin 2 2016 ( π 6 ) cos ( π 3 ) = ( 3 2 ) 2 2016 ( 1 2 ) 2 2016 × 1 1 2 = 3 2 2016 1 2 2 2016 1 = 3 2 2016 1 1 2 2 2016 1 \begin{aligned} F_{2015}\left(\frac{\pi}{6}\right) & = & \frac{\cos^{2^{2016}} \left(\frac{\pi}{6}\right) -\sin^{2^{2016}} \left(\frac{\pi}{6}\right)}{\cos \left(\frac{\pi}{3}\right)} \\ & = & \left(\frac{\sqrt{3}}{2}\right)^{2^{2016}} - \left(\frac{1}{2}\right)^{2^{2016}} \times \frac{1}{\frac{1}{2}} \\ & = & \frac{\sqrt{3}^{2^{2016}}-1}{2^{2^{2016}-1}} \\ & = & \frac{3^{2^{2016-1}}-1}{2^{2^{2016}-1}} \end{aligned}

And thus, a = 3 , b = 2016 , c = 2 a + b + c = 2021 a=3,\ b=2016,\ c=2 \Rightarrow a+b+c = \boxed{2021}

@Kartik Sharma @Oussama Boussif Thanks ¨ \ddot \smile

Kishlaya Jaiswal - 6 years, 3 months ago

Did the exact same! Nice problem!

Kartik Sharma - 6 years, 3 months ago

Just BRILLIANT

Oussama Boussif - 6 years, 3 months ago

Easy question Kishlaya . Btw how did you fare in today's exam ?

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Actually, I am from ISC Board, so I guess that question doesn't applies to me.

Kishlaya Jaiswal - 6 years, 3 months ago

Log in to reply

Oh , ok . I didn't know that .

Brilliant has enabled me to know people from all the diff. Boards , cool !!

So when are your exams ?

A Former Brilliant Member - 6 years, 3 months ago
Nick Diaco
Feb 28, 2015

Right off the bat, we know that sin x = 1 2 \sin x = \frac{1}{2} and cos x = 3 2 \cos x=\frac{\sqrt{3}}{2} so we can simplify the product to F 2015 ( x ) = k = 1 2015 ( ( 1 2 ) 2 k + ( 3 1 2 2 ) 2 k ) F_{2015}(x) = \prod_{k=1}^{2015} \big( \left(\frac{1}{2}\right)^{2^k} +\left(\frac{3^{\frac{1}{2}}}{2}\right)^{2^k} \big) = k = 1 2015 ( 1 + 3 2 k 1 2 2 k ) = k = 1 2015 ( 1 + 3 2 k 1 ) k = 1 2015 ( 2 2 k ) = \prod_{k=1}^{2015} \left(\frac{1+3^{2^{k-1}}}{2^{2^k}}\right) = \dfrac{\prod_{k=1}^{2015} \left(1+3^{2^{k-1}}\right)}{\prod_{k=1}^{2015} \left(2^{2^k}\right)}

We continue by evaluating the top and the bottom individually. For the denominator, we have k = 1 2015 ( 2 2 k ) = 2 k = 1 2015 2 k = 2 2 2016 2 \prod_{k=1}^{2015} \left(2^{2^k}\right) = 2^{\sum_{k=1}^{2015}2^k} = 2^{2^{2016}-2}

And for the numerator, we have k = 1 2015 ( 1 + 3 2 k 1 ) = 3 2 2015 1 2 \prod_{k=1}^{2015} \left(1+3^{2^{k-1}}\right) = \dfrac{3^{2^{2015}}-1}{2} which follows from the fact that k = 1 q ( 1 + a 2 k 1 ) = a 2 q 1 a 1 \prod_{k=1}^{q} \left(1+a^{2^{k-1}}\right) = \dfrac{a^{2^q}-1}{a-1} which can be proven easily by induction. Putting these results together, we get k = 1 2015 ( 1 + 3 2 k 1 ) k = 1 2015 ( 2 2 k ) = 3 2 2015 1 2 2 2 2016 2 = 3 2 2015 1 2 2 2016 1 . \dfrac{\prod_{k=1}^{2015} \left(1+3^{2^{k-1}}\right)}{\prod_{k=1}^{2015} \left(2^{2^k}\right)} = \dfrac{\dfrac{3^{2^{2015}}-1}{2}}{2^{2^{2016}-2}} = \dfrac{3^{2^{2015}}-1}{{2^{2^{2016}-1}}}.

Now for the hard part: our final answer is 3 + 2016 + 2 = 2021 3 + 2016 + 2 = \boxed{2021} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...