Trigonometric identites

Geometry Level 1

If cot(θ)= 5/12 and 0°< θ <90°, what is tan(θ)? Write your answer in simplified, rationalised form tan(θ)= ?

5/16 12/5 17/6 6/7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sergio Melo
Aug 8, 2019
  1. If 0 ° < θ < 90 ° 0°< θ <90° , all the trigonometric functions (sine, cosine, etc.) are positive

  2. Consider that c o t ( θ ) = cot(θ)= ( t a n ( θ ) ) 1 (tan(θ))^{-1} . Note that ( t a n ( θ ) ) 1 (tan(θ))^{-1}≠ t a n 1 ( θ ) tan^{-1}(θ) , because t a n 1 ( θ ) tan^{-1}(θ) is the inverse function of t a n ( θ ) tan(θ) and ( t a n ( θ ) ) 1 (tan(θ))^{-1} is a reciprocal function.

So, t a n ( θ ) tan(θ) equals to:

( t a n ( θ ) ) 1 = (tan(θ))^{-1}= 5 12 \frac{5}{12}

t a n ( θ ) = tan(θ)= 12 5 \frac{12}{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...