Trigonometric identities

Geometry Level 2

If sin ( 2 θ ) = 2 3 , \sin(2\theta) = \frac{2}{3}, compute sin 6 θ + cos 6 θ . \sin^6 \theta + \cos^6\theta.

1 3 \frac13 2 3 \frac23 1 1 4 3 \frac43

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Surya Prakash
Oct 17, 2015

Identity 1: a 6 + b 6 = ( a 2 + b 2 ) 3 3 a 2 b 2 ( a 2 + b 2 ) a^6 + b^6 = \left( a^2 + b^2 \right)^3 - 3 a^2 b^2 \left(a^2 +b^2 \right)

Identity 2: sin 2 θ + c o s 2 θ = 1 \sin ^ 2 \theta + cos ^2 \theta =1

Identity 3: sin 2 θ = 2 sin θ cos θ \sin 2 \theta = 2 \sin \theta \cos \theta

Now using these two identities

sin 6 θ + c o s 6 θ = ( sin 2 θ + cos 2 θ ) 3 3 s i n 2 θ cos 2 θ ( c o s 2 θ + s i n 2 θ ) = 1 3 s i n 2 θ cos 2 θ = 1 3 4 ( 2 sin θ cos θ ) 2 = 1 3 4 ( sin 2 θ ) 2 = 1 3 4 × ( 2 3 ) 2 = 1 3 4 × 4 9 = 1 1 3 = 2 3 \begin{aligned} \sin^{6} \theta + cos^{6} \theta &= \left( \sin ^{2} \theta + \cos ^2 \theta \right)^3 - 3 sin^{2} \theta \cos^{2} \theta \left( cos^2 \theta + sin^2 \theta \right)\\ &= 1 - 3 sin^2 \theta \cos^2 \theta \\ &= 1- \dfrac{3}{4} \left(2 \sin \theta \cos \theta \right)^2 \\ &= 1- \dfrac{3}{4} \left( \sin 2 \theta \right)^2 \\ &= 1- \dfrac{3}{4} \times \left( \dfrac{2}{3} \right)^2 \\ &= 1- \dfrac{3}{4} \times \dfrac{4}{9} \\ &= 1- \dfrac{1}{3} \\ &= \dfrac{2}{3} \end{aligned}

where does identity 1 come from? Obviously there is Pascals triangle... but, in general, is there a formula for a^n+b^n?

Dustin Bryant - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...