Trigonometric Integral

Calculus Level 2

Compute the definite integral: 0 2 π e cos θ cos ( sin θ ) d θ . \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin\theta) \, d\theta.

Hint : Consider the function f ( t ) = 0 2 π e t cos θ cos ( t sin θ ) d θ f(t) = \int_{0}^{2\pi} e^{t \cos\theta} \cos(t\sin\theta) \, d\theta

and use differentiation under the integral sign .

4 π 4\pi 2 π 2\pi π \pi 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Mar 17, 2016

Considering the function f f , we see that t f ( t ) = t 0 2 π e t cos θ [ cos θ cos ( t sin θ ) sin θ sin ( t sin θ ) ] d θ = 0 2 π θ [ e t cos θ sin ( t sin θ ) ] d θ = [ e t cos θ sin ( t sin θ ) ] 0 2 π = 0 \begin{array}{rcl} tf'(t) & = & \displaystyle t \int_0^{2\pi} e^{t\cos\theta}\big[\cos\theta \cos(t\sin\theta) - \sin\theta\sin(t\sin\theta)\big]\,d\theta \\ & = & \displaystyle \int_0^{2\pi} \frac{\partial}{\partial \theta}\big[e^{t\cos\theta} \sin(t\sin\theta)\big]\,d\theta \\ & = & \Big[ e^{t\cos\theta}\sin(t\sin\theta)\Big]_0^{2\pi} \; = \; 0 \end{array} Since f ( 0 ) = 2 π f(0) = 2\pi , the desired integral is f ( 1 ) = 2 π f(1) = \boxed{2\pi} .

Alternatively, complex analysis, using the substitution z = e i θ z = e^{i\theta} , tells us that 0 2 π e cos θ e i sin θ d θ = 1 i z = 1 e z z d z = 2 π R e s z = 0 e z z = 2 π \int_0^{2\pi} e^{\cos\theta} e^{i\sin\theta}\,d\theta \; =\; \frac{1}{i}\int_{|z|=1} \frac{e^z}{z}\,dz \; =\; 2\pi \mathrm{Res}_{z=0} \frac{e^z}{z} = 2\pi and we obtain the integral of the question by taking real parts. This approach also tells us that 0 2 π e cos θ sin ( sin θ ) d θ = 0 , \int_0^{2\pi} e^{\cos\theta} \sin(\sin\theta)\,d\theta \; = \; 0 \;, considering imaginary parts.

Wait... do you mean

= 1 i z = 1 e z z d z = 1 i 2 π R e s z = 0 e z z = 2 π 1 i ? \cdots = \frac{1}{i}\int_{|z|=1} \frac{e^z}{z}\,dz \; =\; \dfrac1i \cdot 2\pi \mathrm{Res}_{z=0} \frac{e^z}{z} = 2\pi \cdot \dfrac1i \; ?

Where did the 1 i \dfrac 1i go?

Pi Han Goh - 5 years, 2 months ago

Log in to reply

The contour integral is 2 π i 2\pi i times the sum of residues, not just 2 π 2\pi times the sum...

Mark Hennings - 5 years, 2 months ago

Log in to reply

Oh goddamn it. Thanks. I need to relearn complex analysis again

Pi Han Goh - 5 years, 2 months ago

Why nobody upvoted this solution? I'm so sad...

Pi Han Goh - 5 years, 2 months ago

The other integral with sin( sin) is easy, as the function is odd with respect to pi.

György Gehér - 2 years, 9 months ago

how do you com up with the second line?

Noah Feinberg - 2 years, 8 months ago
Snehit Panghal
Apr 6, 2020

[ Similarly, the nth derivitive will be fn(t)= exp(tcos(theta)(cos(tsin(theta)+ntheta))

fn(0)=0 for all n cos(ntheta) integrated from 0 to 2pi is 0

f(0)=2*pi

Since all the derivitive terms are 0 the taylor expansion of f(t) shows f is a constant function ;

Therefore f(t)=2*pi for all values of t

hence, f(1)=2*pi

Andreas Wendler
Mar 17, 2016

in(exp(cos(x))*cos(sin(x)),x=0 to 2pi)

ans13 = 6.28318530717958 ± 1.4e-13

ans13/pi

ans14 = 2.00000000000000

=> Solution is 2 π \pi => Fast and good! ;-)

One may also find the integral by Cauchy integral formula.

Arnab Chatterjee - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...