∫ ( 1 + cos x ) cos x + cos x sin x + ( 1 + sin x ) sin x cos x − sin x d x = . . .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First, we simplify the trigonometric function. ( 1 + cos x ) cos x + cos x sin x + ( 1 + sin x ) sin x cos x − sin x = cos x + cos 2 x + cos x sin x + sin x + sin 2 x 1 + cos x − 1 − sin x ) = sin 2 x + cos 2 x + sin x + sin x cos x + cos x 1 + cos x − ( 1 + sin x ) = 1 + sin x + sin x cos x + cos x 1 + cos x − ( 1 + sin x ) = 1 + sin x 1 − 1 + cos x 1 = 1 + sin x 1 ⋅ 1 − sin x 1 − sin x − sin 2 2 1 x + cos 2 2 1 x + cos 2 2 1 x − sin 2 2 1 x 1 = 1 − sin 2 x 1 − sin x − 2 cos 2 2 1 x 1 = cos 2 x 1 − sin x − 2 cos 2 2 1 x 1 = cos 2 x 1 − cos 2 x sin x − 2 cos 2 2 1 x 1 . Thus ∫ ( 1 + cos x ) cos x + cos x sin x + ( 1 + sin x ) sin x cos x − sin x d x = ∫ ( cos 2 x 1 − cos 2 x sin x − 2 cos 2 2 1 x 1 ) d x = ∫ cos 2 x 1 d x − ∫ cos 2 x sin x d x − ∫ 2 cos 2 2 1 x 1 d x = ∫ d ( tan x ) + ∫ cos 2 x 1 d ( cos x ) − ∫ d ( tan 2 1 x ) = tan x − cos x 1 − tan 2 1 x + C = cos x sin x − cos x 1 − tan 2 1 x + C = − cos x 1 − sin x − tan 2 1 x + C = − cos 2 2 1 x − sin 2 2 1 x sin 2 2 1 x + cos 2 2 1 x − 2 sin 2 1 x cos 2 1 x − tan 2 1 x + C = ( sin 2 1 x − cos 2 1 x ) ( sin 2 1 x + cos 2 1 x ) ( sin 2 1 x − cos 2 1 x ) 2 − tan 2 1 x + C = sin 2 1 x + cos 2 1 x sin 2 1 x − cos 2 1 x − tan 2 1 x + C = sin 2 1 x ( 1 + cot 2 1 x ) sin 2 1 x ( 1 − cot 2 1 x ) − tan 2 1 x + ( C + 1 ) = 1 + cot 2 1 x 1 − cot 2 1 x + ( 1 − tan 2 1 x ) + C = 1 + cot 2 1 x 1 − cot 2 1 x + ( 1 − tan 2 1 x ) ( 1 + cot 2 1 x ) + C = 1 + cot 2 1 x 1 − cot 2 1 x + 1 + cot 2 1 x − tan 2 1 x − 1 + C = 1 + cot 2 1 x 1 − tan 2 1 x + C Another way to solve ∫ ( 1 + cos x ) cos x + cos x sin x + ( 1 + sin x ) sin x cos x − sin x d x = ∫ ( 1 + sin x 1 − 1 + cos x 1 ) d x is using Weierstrass substitution . By using Weierstrass substitution, the integral can be quickly obtained.