Trigonometric Integration! (7)

Calculus Level 4

If I n = 0 π / 4 tan n x d x \displaystyle I_n = \int_0^{\pi /4} \tan^n x \, dx , where n n is a non-negative integer, find I n + I n + 2 I_n + I_{n+2} in terms of n n .

n n + 1 \frac{n}{n+1} 1 n \frac{1}{n} 1 n 1 \frac{1}{n-1} n n 1 \frac{n}{n-1} 1 1 1 n + 1 \frac{1}{n+1} 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I n = 0 π / 4 tan n x . d x I n + 2 = 0 π / 4 tan n + 2 x . d x I n + I n + 2 = 0 π / 4 ( tan n x + tan n + 2 x ) . d x = 0 π / 4 tan n x ( 1 + tan 2 x ) . d x = 0 π / 4 tan n x × sec 2 x . d x If t = tan x , d t = sec 2 x . d x When x = 0 , t = 0 and x = π 4 , t = tan π 4 = 1 I n + I n + 2 = 0 1 t n . d t = [ t n + 1 n + 1 ] 0 1 I n + I n + 2 = 1 n + 1 . \large \displaystyle I_n = \int_0^{\pi/4} \tan ^n x .dx \implies I_{n+2} = \int_0^{\pi/4} \tan ^{n+2} x.dx\\ \large \displaystyle \therefore I_n + I_{n+2} = \int_0^{\pi/4} (\tan ^n x + \tan ^{n+2} x). dx\\ \large \displaystyle = \int_0^{\pi/4} \tan ^n x (1+\tan^2 x) . dx\\ \large \displaystyle = \int_0^{\pi/4} \tan ^n x \times \sec^2 x . dx\\ \large \displaystyle \text{If } t = \tan x, dt = \sec ^2 x.dx\\ \large \displaystyle \text{When } x = 0, t = 0 \text{ and } x = \frac{\pi}{4}, t = \tan \frac{\pi}{4} = 1\\ \large \displaystyle \implies I_n + I_{n+2} = \int_0^1 t^n . dt = \left[ \frac{t^n + 1}{n+1} \right]_0^1\\ \large \displaystyle \therefore I_n + I_{n+2} = \color{#D61F06}{\boxed{\frac{1}{n+1}}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...