Trigonometric problem

Geometry Level 3

Solve for angle A A (in degrees) given that 0 < 5 A < 90 0 < 5A < 90 and

1 cos 0 × cos A + 1 cos A × cos 2 A + 1 cos 2 A × cos 3 A + 1 cos 3 A × cos 4 A + 1 cos 4 A × cos 5 A = 2 3 sin A \frac{ 1 } {\cos 0 \times \cos A } + \frac{ 1 } { \cos A \times \cos 2A } + \frac{ 1 } { \cos 2A \times \cos 3A } + \frac{1}{ \cos 3A \times \cos 4A } + \frac{1}{ \cos 4A \times \cos 5A } = \frac{ 2 - \sqrt{3} } { \sin A }


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
Nov 14, 2016

Solution:

First take S i n A SinA on the other side.Now solve it using the equation

t a n [ ( n 1 ) A ] tan[(n-1)A] + S i n A C o s [ ( n 1 ) A ] × C o s ( n A ) \frac{SinA}{Cos[(n-1)A] \times Cos(nA)} = t a n ( n A ) tan(nA) (True for any n n )

Hence the equation reduces to

t a n 5 A tan5A = 2 3 2 - \sqrt 3

5 A 5A = 15 15

A A = 3 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...