Double trouble cos 1 \cos^{-1}

Geometry Level 3

cos 1 ( 2 3 x ) + cos 1 ( 3 4 x ) = π 2 \cos^{-1}\left(\dfrac{2}{3x}\right) +\cos^{-1}\left(\frac{3}{4x}\right)=\frac{\pi}{2}

If x > 3 4 x>\dfrac{3}{4} , satisfying the equation above, can be expressed as x = A 2 + 1 A x=\dfrac{\sqrt{A^{2} +1}}{A} , find A A .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Amal Hari
Mar 22, 2019

Let cos a = 2 3 x \cos a=\dfrac{2}{3x} and cos b = 3 4 x \cos b =\dfrac{3}{4x}

Then, a + b = π 2 a+b=\dfrac{\pi}{2}

cos b = cos ( π 2 a ) \cos b =\cos \bigg(\dfrac{\pi}{2} -a \bigg)

cos b = sin a \cos b=\sin a

sin a = 3 4 x \sin a=\dfrac{3}{4x}

cos a = 16 x 2 9 4 x \cos a=\dfrac{\sqrt{16x^{2} -9}}{4x}

Also from the equation , cos a = 2 3 x \cos a=\dfrac{2}{3x}

2 3 x = 16 x 2 9 4 x \dfrac{2}{3x}=\dfrac{\sqrt{16x^{2} -9}}{4x}

Solving for x gives two possible values but since we are looking for a number > 3 4 \dfrac{3}{4} , x = 145 12 x=\dfrac{\sqrt{145}}{12}

x = 1 2 2 + 1 12 x=\dfrac{\sqrt{12^{2} +1}}{12}

Chew-Seong Cheong
Mar 23, 2019

cos 1 ( 2 3 x ) + cos 1 ( 3 4 x ) = π 2 ( 2 3 x ) ( 3 4 x ) ( 1 ( 2 3 x ) 2 ) ( 1 ( 3 4 x ) 2 ) = 0 ( 1 4 9 x 2 ) ( 1 9 16 x 2 ) = 1 2 x 2 1 12 x 2 ( 9 x 2 4 ) ( 16 x 2 9 ) = 1 2 x 2 For x 0 144 x 4 145 x 2 + 36 = 6 Squaring both sides 144 x 4 145 x 2 + 36 = 36 x 2 ( 144 x 2 145 ) = 0 For x > 3 4 x = 144 + 1 12 \begin{aligned} \cos^{-1} \left(\frac 2{3x}\right) + \cos^{-1} \left(\frac 3{4x}\right) & = \frac \pi 2 \\ \left(\frac 2{3x}\right) \left(\frac 3{4x}\right) - \sqrt{\left(1-\left(\frac 2{3x}\right)^2\right)\left(1-\left(\frac 3{4x}\right)^2\right)} & = 0 \\ \sqrt{\left(1-\frac 4{9x^2}\right)\left(1-\frac 9{16x^2}\right)} & = \frac 1{2x^2} \\ \frac 1{12x^2}\sqrt{\left(9x^2-4\right)\left(16x^2 - 9\right)} & = \frac 1{2x^2} & \small \color{#3D99F6} \text{For }x \ne 0 \\ \sqrt{144x^4 - 145x^2 + 36} & = 6 & \small \color{#3D99F6} \text{Squaring both sides} \\ 144x^4 - 145x^2 + 36 & = 36 \\ x^2 \left(144x^2 - 145\right) & = 0 & \small \color{#3D99F6} \text{For }x > \frac 34 \\ \implies x & = \sqrt{\frac {144+1}{12}} \end{aligned}

Therefore, A = 12 A=\boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...