x n + 1 = ( 2 − 2 cos ( 2 α ) ) x n + 2 − cos ( 2 α ) ( 2 + cos ( 2 α ) ) x n + cos 2 ( α )
Consider the sequence of real numbers ( x n ) n = 1 ∞ defined as above with x 1 = 1 for every n ∈ N , where α is a real parameter.
∀ n ∈ N , let y n = k = 1 ∑ n 2 x k + 1 1
For specific values of α , if the sequence ( y n ) n = 1 ∞ has a finite limit, find that limit.
Bonus: Determine the values of α for which the sequence ( y n ) n = 1 ∞ has a finite limit.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Note that x n > 0 for all n . We have:
2 x n + 1 + 1 = ( 2 − 2 cos 2 α ) x n + 2 − cos 2 α ( 4 + 2 cos 2 α + 2 − 2 cos 2 α ) x n + 2 cos 2 α + 2 − cos 2 α
= ( 2 − 2 cos 2 α ) x n + 2 − cos 2 α 3 ( 2 x n + 1 )
which leads to
2 x n + 1 + 1 1 = 3 ( 2 x n + 1 ) ( 1 − cos 2 α ) ( 2 x n + 1 ) + 1 = 3 1 ( 2 sin 2 α + 2 x n + 1 1 ) .
This show that: 2 x n + 1 + 1 1 − sin 2 α = 3 1 ( 2 x n + 1 1 − sin 2 α ) ,
Or z n + 1 = 3 1 z n , where z n = 2 x n + 1 1 − sin 2 α .
Thus ( z n ) is a geometric progression with z 1 = 3 1 − sin 2 α and ratio q = 3 1 . Then
k = 1 ∑ n z k = ( 3 1 − sin 2 α ) 1 − 3 1 1 − 3 n 1 = 2 1 ( 1 − 3 sin 2 α ) ( 1 − 3 n 1 )
Thus, y n = k = 1 ∑ n ( z k + sin 2 α ) = 2 1 ( 1 − 3 sin 2 α ) + n sin 2 α .
Since the sequence ( 3 n 1 ) converges, the sequence ( y n ) converges if and only if the sequence n sin 2 α converges, or s i n 2 α = 0 , that is α = k π , k ∈ Z .
Hence, n → ∞ lim y n = n → ∞ lim 2 1 ( 1 − 3 n 1 ) = 2 1 .