Trigonometric Series

Geometry Level 3

sin 2 5 + sin 2 10 + sin 2 15 + sin 2 20 + + sin 2 90 { \sin }^{ 2 }{ 5 }^{ \circ }+{ \sin }^{ 2 }{ 10 }^{ \circ }+{ \sin }^{ 2 }{ 15 }^{ \circ }+{ \sin }^{ 2 }{ 20 }^{ \circ }+\ldots+{ \sin }^{ 2 }{ 90 }^{ \circ }

Find the value of above expression.

19 2 \frac{19}{2} 17 2 \frac{17}{2} 7 7 21 2 \frac{21}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kay Xspre
Oct 5, 2015

Use the identity of s i n ( x ) = c o s ( 9 0 x ) sin(x) = cos(90^{\circ}-x) and that of s i n 2 ( x ) + c o s 2 ( x ) = 1 sin^2(x)+cos^2(x) = 1 , it will be 8 ( s i n 2 ( x ) + c o s 2 ( x ) ) + s i n 2 ( 4 5 ) + s i n 2 ( 9 0 ) = 8 ( 1 ) + ( 1 2 ) 2 + 1 2 = 19 2 8(sin^2(x)+cos^2(x))+sin^2(45^{\circ})+sin^2(90^{\circ}) = 8(1)+(\frac{1}{\sqrt{2}})^2+1^2 = \frac{19}{2}

using summation rule of lower limits 0 to upper of 18 with base (sin5x)^2

Ramiel To-ong - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...