Trigonometric Series : Trinity

Calculus Level 5

1 + 2 3 sin 2 x + 2 4 3 5 sin 4 x + 2 4 6 3 5 7 sin 6 x + \displaystyle 1 + \dfrac{2}{3}\sin^2x + \dfrac{2 \cdot 4}{3 \cdot 5}\sin^4x + \dfrac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7}\sin^6x + \ldots

Let f ( x ) f(x) denote the value of the above expression.

Then f ( π 24 ) \displaystyle f\left( \dfrac{\pi}{24} \right) can be written as

π a ( b + c ) d e \dfrac{\pi^a (\sqrt{b} + c)}{d\sqrt{e}}

where b , e b,e are squarefree and a , b , c , d , e N a,b,c,d,e \in \mathbb N . Find the value of a + b + c + d + e a+b+c+d+e .


Try more from the set Cool Sequence and Series


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronak Agarwal
Mar 8, 2015

That's real easy, Start with integral :

I n = 0 π / 2 sin n x d x \displaystyle {I}_{n} = \int _{ 0 }^{ \pi /2 }{ \sin ^{ n }{ x } dx }

Integrating by parts we have :

u = sin n 1 x , v = s i n ( x ) u=\sin^{n-1}{x} , v'=sin(x)

I n = ( n 1 ) 0 π / 2 sin n 2 x cos 2 x d x \displaystyle {I}_{n} = (n-1)\int _{ 0 }^{ \pi /2 }{ \sin ^{ n-2 }{ x } \cos ^{ 2 }{ x } dx }

I n = ( n 1 ) 0 π / 2 sin n 2 x ( 1 sin 2 x ) d x \displaystyle \Rightarrow {I}_{n} = (n-1)\int _{ 0 }^{ \pi /2 }{ \sin ^{ n-2 }{ x } (1-\sin ^{ 2 }{ x } )dx }

I n = ( n 1 ) n I n 2 \displaystyle \Rightarrow { I }_{ n }=\dfrac { (n-1) }{ n } { I }_{ n-2 }

Put n = 3 n=3 to get :

I 3 = 2 3 I 1 = 2 3 \displaystyle { I }_{ 3 }=\frac { 2 }{ 3 } { I }_{ 1 } = \frac{2}{3}

Put n = 5 n=5 to get :

I 5 = 4 5 I 3 = 4 5 . 2 3 I 1 = 4 5 . 2 3 \displaystyle { I }_{ 5 }=\frac { 4 }{ 5 } { I }_{ 3 }=\frac { 4 }{ 5 } .\frac { 2 }{ 3 } { I }_{ 1 }=\frac { 4 }{ 5 } .\frac { 2 }{ 3 }

Hence we can write our summation as :

f ( x ) = n = 0 sin 2 n x I 2 n + 1 \displaystyle f(x) = \sum _{ n=0 }^{ \infty }{ \sin ^{ 2n }{ x } { I }_{ 2n+1 } }

f ( x ) = n = 0 sin 2 n x 0 π / 2 s i n 2 n + 1 y d y \displaystyle f(x) = \sum _{ n=0 }^{ \infty }{ \sin ^{ 2n }{ x } \int _{ 0 }^{ \pi /2 }{ { sin }^{ 2n+1 }y } dy }

Interchanging integral and summation we have :

0 π / 2 sin y n = 0 ( sin ( x ) sin ( y ) ) 2 n d y \displaystyle \int _{ 0 }^{ \pi /2 }{ \sin { y } \sum _{ n=0 }^{ \infty }{ { (\sin { (x) } \sin { (y) } ) }^{ 2n } } } dy

Applying formula for geometric progression we have :

f ( x ) = 0 π / 2 sin ( y ) 1 sin 2 x sin 2 y d y \displaystyle f(x) = \int _{ 0 }^{ \pi /2 }{ \frac { \sin { (y) } }{ 1-\sin ^{ 2 }{ x } \sin ^{ 2 }{ y } } } dy

After a little manipulation it gets converted into.

f ( x ) = 0 π / 2 sin ( y ) cos 2 x + sin 2 x cos 2 y d y \displaystyle f(x) =\int _{ 0 }^{ \pi /2 }{ \frac { \sin { (y) } }{ \cos ^{ 2 }{ x } +\sin ^{ 2 }{ x } \cos ^{ 2 }{ y } } } dy

Put cos ( y ) = t \cos(y) =t to get :

f ( x ) = 0 π / 2 d t cos 2 x + ( sin 2 x ) t 2 \displaystyle f(x) = \int _{ 0 }^{ \pi /2 }{ \frac { dt }{ \cos ^{ 2 }{ x } +(\sin ^{ 2 }{ x }) { t }^{ 2 } } }

Now this integral is trivial and finally S S comes out to be :

f ( x ) = 2 x sin 2 x \displaystyle f(x) =\frac { 2x }{ \sin { 2x } }

Now rest work is trivial and left as an exercise to the reader.

very Nice approach :)

Hasan Kassim - 6 years, 3 months ago

We can also use a generating function and solve for the differential équation. I used: U n + 1 = 2 n + 2 2 n + 3 U n U_{n+1}=\frac{2n+2}{2n+3}*U_{n}

And putting: y = f ( x ) = n = 0 U n x 2 n y=f(x)=\displaystyle \sum_{n=0}^{\infty} U_{n}*x^{2n}

After some manipulations we get the following differential équation: 2 y x 2 + y x 3 = y 1 + x y 2yx^2+y'x^3=y-1+xy'

The solution of the latter taking in consideration the initial conditions is:

f ( x ) = s i n 1 ( x ) x ( 1 x 2 ) f(x)=\frac{sin^{-1}(x)}{x\sqrt(1-x^2)}

Now all we do is substitute x = s i n ( π / 24 ) x=sin(\pi/24)

So what do You think @Ronak Agarwal ? ^^

Oussama Boussif - 6 years, 3 months ago

Log in to reply

Nice application of generating function.

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

Thanks, and by the way I learned That method from You (You used it to prove a sum in some note).

Oussama Boussif - 6 years, 3 months ago
Hasan Kassim
Mar 9, 2015

Rewrite using Sigma notation:

f ( x ) = n = 0 ( 2 n ) ! ! ( 2 n + 1 ) ! ! sin 2 n x \displaystyle f(x) = \sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!}\sin^{2n}x

n = 0 n ! 2 n ( 2 n + 1 ) ! n ! 2 n sin 2 n x \displaystyle \sum_{n=0}^{\infty} \frac{n!2^n}{\frac{(2n+1)!}{n!2^n}}\sin^{2n}x

n = 0 n ! n ! ( 2 n + 1 ) ! ( 4 sin 2 x ) n \displaystyle \sum_{n=0}^{\infty} \frac{n!n!}{(2n+1)!}(4\sin^{2}x)^n

Recall the definition of the Beta Function :

B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t = ( x 1 ) ! ( y 1 ) ! ( x + y 1 ) ! \displaystyle B(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1} dt = \frac{(x-1)!(y-1)!}{(x+y-1)!}

Setting x = y = n + 1 x=y=n+1 , We get:

( n ) ! ( n ) ! ( 2 n + 1 ) ! = 0 1 t n ( 1 t ) n d t \displaystyle \frac{(n)!(n)!}{(2n+1)!} = \int_0^1 t^{n}(1-t)^{n} dt

Replace this in our summation:

f ( x ) = n = 0 0 1 t n ( 1 t ) n ( 4 sin 2 x ) n d t \displaystyle f(x)= \sum_{n=0}^{\infty} \int_0^1 t^{n}(1-t)^{n} (4\sin^{2}x)^n dt

= 0 1 ( n = 0 ( t ( 1 t ) ( 4 sin 2 x ) ) n ) d t \displaystyle = \int_0^1 \Bigg(\sum_{n=0}^{\infty} (t(1-t)(4\sin^2x))^n\Bigg) dt

Note that, on the interval [ 0 , π 2 ] [0,\frac{\pi}{2} ] , the sum is a convergent geometric sum for 0 < x < π 6 0<x<\frac{\pi}{6} .

f ( x ) = 0 1 1 1 t ( 1 t ) ( 4 sin 2 x ) d t \displaystyle f(x) = \int_0^1 \frac{1}{1-t(1-t)(4\sin^2x)} dt

Rearrange our integral, we get:

f ( x ) = 1 cos 2 x 0 1 d t 1 + [ ( 2 t 1 ) tan x ] 2 \displaystyle f(x) =\frac{1}{\cos^2x} \int_0^1 \frac{dt}{ 1+ [(2t-1)\tan x]^2}

Computing this integral yields :

f ( x ) = 2 x sin 2 x \displaystyle \boxed{f(x) = \frac{2x}{\sin 2x} }

sin π 12 = sin π 6 2 = 1 cos π 6 2 \displaystyle \sin \frac{\pi}{12} = \sin \frac{\frac{\pi}{6}}{2} = \sqrt{\frac{1-\cos \frac{\pi}{6}}{2}}

= 2 3 2 \displaystyle = \frac{\sqrt{2-\sqrt{3}}}{2}

Note: ( 2 2 6 2 ) 2 = 2 3 \big( \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} \big) ^2 = 2-\sqrt{3}

= > sin π 12 = 6 2 4 \displaystyle => \sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}

= > f ( π 24 ) = π 12 6 2 4 \displaystyle => f(\frac{\pi}{24}) = \frac{\frac{\pi}{12}}{\frac{\sqrt{6} -\sqrt{2}}{4} }

= π ( 3 + 1 ) 6 2 \displaystyle = \boxed{\frac{\pi(\sqrt{3}+1)}{6\sqrt{2}} }

N!ce approach

harsh soni - 6 years, 3 months ago

Did the same way! Except the fact that while computing the integral I did it using the fact that it is a quadratic polynomial and so on.

Kartik Sharma - 6 years, 3 months ago

Now that's a brilliant method !! I think this is a far better and a good solution than that other guy's method .

Uchiha Robert - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...