Trigonometric Sum

Geometry Level 4

If the average of the numbers n sin n n\sin n^\circ , where n = 2 , 4 , 6 , , 180 n = 2,4,6,\cdots,180 is cot x \cot x^\circ . Then what is the value of x x ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Jul 18, 2018

I'll post a long, detailed solution. Perhaps there's an easier one, I don't know.

Let us consider the sum:

n = 1 90 cos ( 2 n x ) \large \displaystyle \sum_{n=1}^{90} \cos(2nx)

This is the same as ( j j is the imaginary unit):

n = 1 90 cos ( 2 n x ) = n = 1 90 [ e j 2 n x ] \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \sum_{n=1}^{90} \Re \left [\ e^{j2nx} \right ]

n = 1 90 cos ( 2 n x ) = [ n = 1 90 e j 2 n x ] \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \Re \left [\sum_{n=1}^{90} e^{j2nx} \right ]

By geometric progression sum formula:

n = 1 90 cos ( 2 n x ) = [ e j 182 x e j 2 x e j 2 x 1 ] \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \Re \left [ \frac{e^{j182x} - e^{j2x}}{e^{j2x}-1} \right ]

n = 1 90 cos ( 2 n x ) = [ ( e j 182 x e j 2 x ) ( e j 2 x 1 ) ( e j 2 x 1 ) ( e j 2 x 1 ) ] \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \Re \left [ \frac{(e^{j182x} - e^{j2x}) \cdot ( e^{-j2x}-1)}{(e^{j2x}-1) \cdot (e^{-j2x}-1)} \right ]

n = 1 90 cos ( 2 n x ) = [ e j 180 x e j 182 x 1 + e j 2 x 2 2 cos ( 2 x ) ] \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \Re \left [ \frac{e^{j180x} - e^{j182x} - 1 + e^{j2x}}{2 - 2 \cos(2x)} \right ]

n = 1 90 cos ( 2 n x ) = cos ( 180 x ) cos ( 182 x ) 1 + cos ( 2 x ) 2 2 cos ( 2 x ) \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \frac{\cos(180x) - \cos(182x) - 1 + \cos(2x)}{2 - 2 \cos(2x)}

Since cos ( 2 x ) = 1 2 sin 2 ( x ) \cos(2x) = 1 - 2\sin^2(x) :

n = 1 90 cos ( 2 n x ) = cos ( 180 x ) cos ( 182 x ) 1 + cos ( 2 x ) 4 sin 2 ( x ) \large \displaystyle \sum_{n=1}^{90} \cos(2nx) = \frac{\cos(180x) - \cos(182x) - 1 + \cos(2x)}{4\sin^2(x)}

Differentiating on both sides with respect to x x :

n = 1 90 2 n sin ( 2 n x ) = [ 180 sin ( 180 x ) + 182 sin ( 182 x ) 2 sin ( 2 x ) ] [ 4 sin 2 ( x ) ] [ cos ( 180 x ) cos ( 182 x ) 1 + cos ( 2 x ) ] [ 4 sin ( 2 x ) ] 16 sin 4 ( x ) \large \displaystyle \sum_{n=1}^{90} -2n \sin(2nx) = \frac{ [-180 \sin(180x) + 182 \sin(182x) - 2\sin(2x)] \cdot [4 \sin^2(x)] - [\cos(180x) - \cos(182x) - 1 + \cos(2x)]\cdot[4\sin(2x)] }{ 16 \sin^4(x) }

Make x = 1 o x = 1^o and considering that cos ( 18 0 o + x o ) = cos ( x o ) \cos(180^o+x^o) = -\cos(x^o) and sin ( 18 0 o + x o ) = sin ( x o ) \sin(180^o+x^o) = -\sin(x^o) :

n = 1 90 2 n sin ( 2 n o ) = ( 184 sin ( 2 o ) ) ( 4 sin 2 ( 1 o ) ) ( 2 cos ( 2 o ) 2 ) ( 4 sin ( 2 o ) ) 16 sin 4 ( 1 o ) \large \displaystyle \sum_{n=1}^{90} -2n \sin(2n^o) = \frac{ (-184 \sin(2^o))(4 \sin^2(1^o)) - ( 2 \cos(2^o) - 2)(4\sin(2^o))}{16 \sin^4(1^o) }

Recalling again that cos ( 2 o ) = 1 2 sin 2 ( 1 o ) \cos(2^o) = 1 - 2\sin^2(1^o) :

n = 1 90 2 n sin ( 2 n o ) = ( 184 sin ( 2 o ) ) ( 4 sin 2 ( 1 o ) ) + ( 4 sin 2 ( 1 o ) ) ( 4 sin ( 2 o ) ) 16 sin 4 ( 1 o ) \large \displaystyle \sum_{n=1}^{90} 2n \sin(2n^o) = \frac{ (184 \sin(2^o))(4 \sin^2(1^o)) + ( -4 \sin^2(1^o))(4\sin(2^o))}{16 \sin^4(1^o) }

Dividing above and below by 4 sin 2 ( 1 o ) 4 \sin^2(1^o) :

n = 1 90 2 n sin ( 2 n o ) = 184 sin ( 2 o ) 4 sin ( 2 o ) 4 sin 2 ( 1 o ) \large \displaystyle \sum_{n=1}^{90} 2n \sin(2n^o) = \frac{ 184 \sin(2^o) - 4\sin(2^o)}{4 \sin^2(1^o) }

n = 1 90 2 n sin ( 2 n o ) = 180 sin ( 2 o ) 4 sin 2 ( 1 o ) \large \displaystyle \sum_{n=1}^{90} 2n \sin(2n^o) = \frac{ 180 \sin(2^o) }{4 \sin^2(1^o) }

Since sin ( 2 o ) = 2 sin ( 1 o ) cos ( 1 o ) \sin(2^o) = 2\sin(1^o) \cos(1^o) :

n = 1 90 2 n sin ( 2 n o ) = 360 sin ( 1 o ) cos ( 1 o ) 4 sin 2 ( 1 o ) \large \displaystyle \sum_{n=1}^{90} 2n \sin(2n^o) = \frac{ 360 \sin(1^o) \cos(1^o) }{4 \sin^2(1^o) }

n = 1 90 2 n sin ( 2 n o ) = 90 cos ( 1 o ) sin ( 1 o ) \large \displaystyle \sum_{n=1}^{90} 2n \sin(2n^o) = \frac{ 90 \cos(1^o) }{\sin(1^o) }

n = 1 90 2 n sin ( 2 n o ) = 90 cot ( 1 o ) \large \displaystyle \sum_{n=1}^{90} 2n \sin(2n^o) = 90 \cot(1^o)

1 90 n = 1 90 2 n sin ( 2 n o ) = cot ( 1 o ) \color{#20A900} \boxed{ \large \displaystyle \frac{1}{90} \sum_{n=1}^{90} 2n \sin(2n^o) = \cot(1^o) }

Which is the average we are looking for. Thus:

x = 1 \color{#3D99F6} \boxed{ \large \displaystyle x = 1}

Mark Hennings
Jul 19, 2018

We have S = 1 90 n = 1 90 2 n sin ( 2 n ) = 1 90 n = 1 89 ( 2 n ) sin ( 2 n ) = 1 90 [ n = 1 44 ( 2 n ) sin ( 2 n ) + 90 + n = 1 44 ( 180 2 n ) sin ( 180 2 n ) ] = 1 + 2 n = 1 44 sin ( 2 n ) = 1 + 2 n = 1 44 sin n π 90 = 1 + 2 I m [ n = 1 44 e n π i 90 ] = 1 + 2 I m ( e π i 2 1 e π i 90 1 ) = 1 + 2 sin π 4 sin ( π 4 π 180 ) sin π 180 = 1 + cos π 180 cos ( π 2 π 180 ) sin π 180 = cot π 180 = cot 1 \begin{aligned} S & = \; \tfrac{1}{90}\sum_{n=1}^{90}2n \sin(2n)^\circ \; = \; \tfrac{1}{90}\sum_{n=1}^{89}(2n)\sin(2n)^\circ \\ & = \; \frac{1}{90}\left[ \sum_{n=1}^{44}(2n)\sin(2n)^\circ + 90 + \sum_{n=1}^{44}(180-2n)\sin(180-2n)^\circ\right] \; = \; 1 + 2\sum_{n=1}^{44}\sin(2n)^\circ \\ & = \; 1 + 2\sum_{n=1}^{44}\sin \tfrac{n\pi}{90} \; = \; 1 + 2\mathfrak{Im}\left[\sum_{n=1}^{44} e^{\frac{n\pi i}{90}}\right] \; = \; 1 + 2\mathfrak{Im}\left(\frac{e^{\frac{\pi i}{2}} - 1}{e^{\frac{\pi i}{90}} - 1}\right) \; = \; 1 + 2\frac{\sin\frac{\pi}{4}\sin\big(\frac{\pi}{4} - \frac{\pi}{180}\big)}{\sin\frac{\pi}{180}} \\ & = \; 1 + \frac{\cos\frac{\pi}{180} - \cos\big(\frac{\pi}{2} - \frac{\pi}{180}\big)}{\sin\frac{\pi}{180}} \; = \; \cot\tfrac{\pi}{180} \; = \; \cot 1^\circ \end{aligned} making the answer 1 \boxed{1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...