Trigonometric Sum with a Twist

Algebra Level 3

Find the exact value of the following sum 1 3 tan ( 2 0 ) + 1 3 + tan ( 4 0 ) + 1 3 tan ( 8 0 ) . \frac{1}{\sqrt{3} - \tan(20^\circ)} +\frac{1}{\sqrt{3} + \tan(40^\circ)}+\frac{1}{\sqrt{3} - \tan(80^\circ)}.

3 2 \frac{\sqrt{3}}{2} 3 1 \sqrt{3}-1 3 3 \frac{\sqrt{3}}{3} 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We prove the following identity: 1 x tan θ + 1 x tan ( θ π 3 ) + 1 x tan ( θ + π 3 ) = 3 x 2 6 x tan 3 θ 3 x 3 3 x 2 tan 3 θ 3 x + tan 3 θ . \frac{1}{x-\tan\theta} + \frac{1}{x-\tan(\theta-\frac{\pi}{3})} + \frac{1}{x-\tan(\theta+\frac{\pi}{3})} = \frac{3x^2-6 x\tan 3\theta - 3}{x^3-3x^2\tan 3\theta-3x+\tan 3\theta}. By the triple angle tangent formula: tan 3 θ = ( 3 tan θ tan 3 θ ) / ( 1 3 tan 2 θ ) \tan 3\theta = (3\tan\theta-\tan^3\theta)/(1-3\tan^2\theta) , it follows that x = tan θ x=\tan\theta is a zero of the polynomial P θ ( x ) = x 3 3 x 2 tan 3 θ 3 x + tan 3 θ P_\theta(x)=x^3-3x^2\tan 3\theta - 3x + \tan 3\theta . Moreover, since tan 3 ( θ + π / 3 ) = tan 3 ( θ π / 3 ) = tan 3 θ \tan 3(\theta + \pi/3) = \tan 3(\theta-\pi/3) = \tan 3\theta , it follows that some of the zeros of the polynomial P θ ( x ) P_\theta(x) include x = tan θ , tan ( θ + π / 3 ) , tan ( θ π / 3 ) x=\tan\theta, \tan(\theta+\pi/3),\tan(\theta-\pi/3) . Since P θ ( x ) P_\theta(x) is a monic cubic polynomial, we conclude that these must be all the roots and obtain the following factoring identity: P θ ( x ) = ( x tan θ ) ( x tan ( θ π 3 ) ) ( x tan ( θ + π 3 ) ) . P_\theta(x) = (x-\tan\theta)\left(x-\tan\left(\theta-\frac{\pi}{3}\right)\right)\left(x-\tan\left(\theta+\frac{\pi}{3}\right)\right). The desired identity is obtained from expressing P θ ( x ) / P θ ( x ) P'_\theta(x)/P_\theta(x) in two different ways: one using the above factoring formula and the other using the unfactored form of P θ ( x ) P_\theta(x) .

To obtain the value of the expression in question, we substitute x = 3 x=\sqrt{3} and θ = π / 9 = 2 0 \theta = \pi/9 = 20^\circ into the main identity. This yields 1 3 tan ( 2 0 ) + 1 3 + tan ( 4 0 ) + 1 3 tan ( 8 0 ) = 3 2 . \frac{1}{\sqrt{3}-\tan(20^\circ)} + \frac{1}{\sqrt{3}+\tan(40^\circ)} + \frac{1}{\sqrt{3}-\tan(80^\circ)} = \frac{\sqrt{3}}{2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...