n = 0 ∑ 8 cos ( 1 9 ( 2 n + 1 ) π ) = b a
The above equation is true for coprime positive integers a and b , find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Woah! I haven't seen this derivation before! +1
Let us consider a general case as follows.
S = n = 0 ∑ m − 1 cos ( 2 m + 1 ( 2 n + 1 ) π ) = n = 0 ∑ m − 1 ℜ { e 2 m + 1 ( 2 n + 1 ) π i } = ℜ { n = 0 ∑ m − 1 e 2 m + 1 ( 2 n + 1 ) π i } = ℜ { e 2 m + 1 π i n = 0 ∑ m − 1 ( e 2 m + 1 2 π i ) n } = ℜ { e 2 m + 1 π i ( 1 − e 2 m + 1 2 π i 1 − e 2 m + 1 2 m π i ) } = ℜ { 1 − e 2 m + 1 2 π i e 2 m + 1 π i − e 2 m + 1 ( 2 m + 1 ) π i } = ℜ { 1 − e 2 m + 1 2 π i e 2 m + 1 π i − e π i } = ℜ { ( 1 − e 2 m + 1 π i ) ( 1 + e 2 m + 1 π i ) e 2 m + 1 π i + 1 } = ℜ { 1 − e 2 m + 1 π i 1 } = ℜ { 1 − cos ( 2 m + 1 π ) − sin ( 2 m + 1 π ) i 1 } = ℜ { 1 − 2 cos ( 2 m + 1 π ) + cos 2 ( 2 m + 1 π ) + sin 2 ( 2 m + 1 π ) 1 − cos ( 2 m + 1 π ) + sin ( 2 m + 1 π ) i } = ℜ { 2 ( 1 − cos ( 2 m + 1 π ) ) 1 − cos ( 2 m + 1 π ) + sin ( 2 m + 1 π ) i } = 2 1
⟹ a + b = 1 + 2 = 3
Consider the geometric progression x + x 3 + x 5 + . . . . . . + x 2 N + 1
such that ∑ n = 0 N x 2 n + 1 = x + x 3 + x 5 + . . . . . . + x 2 N + 1 = 1 − x 2 x − x 2 N + 3
Now, Put x = cos θ + i sin θ
∑ n = 0 N x 2 n + 1 = 1 − x 2 x − x 2 N + 3
∑ n = 0 N ( cos θ + i sin θ ) 2 n + 1 = 1 − ( cos θ + i sin θ ) 2 ( cos θ + i sin θ ) − ( cos θ + i sin θ ) 2 N + 3
Using D e M o i v r e ′ s T h e o r e m
∑ n = 0 N cos ( 2 n + 1 ) θ + i sin ( 2 n + 1 ) θ = 1 − ( cos 2 θ + i sin 2 θ ) ( cos θ + i sin θ ) − ( cos ( 2 N + 3 ) θ + i sin ( 2 N + 3 ) θ )
Separating the real terms we have
(After some simplification obviously)
∑ n = 0 N cos ( 2 n + 1 ) θ = 2 × sin θ sin ( 2 ( N + 1 ) θ )
Problem Loading...
Note Loading...
Set Loading...
F = n = 0 ∑ 8 cos ( 1 9 ( 2 n + 1 ) π ) 2 sin ( 1 9 π ) F = = ⟹ F = = n = 0 ∑ 8 2 cos ( 1 9 ( 2 n + 1 ) π ) sin ( 1 9 π ) n = 0 ∑ 8 ( sin ( 1 9 2 ( n + 1 ) π ) − sin ( 1 9 2 n π ) ) ( A T e l e s c o p i c S e r i e s ) = sin ( 1 9 1 8 π ) 2 sin ( 1 9 π ) sin ( 1 9 1 8 π ) 2 1 ( ∵ sin ( π − x ) = sin x )
∴ 1 + 2 = 3
Generalisation:-
r = 1 ∑ n cos ( a + r d ) = sin ( 2 d ) sin ( 2 n d ) cos ( a + ( n − 1 ) 2 d )
(** Can be proved in a similar fashion)