Trigonometric summation

Geometry Level 4

n = 0 8 cos ( ( 2 n + 1 ) π 19 ) = a b \large \sum^{8}_{n=0} \cos \left(\frac{(2n+1)\pi}{19} \right) = \frac ab

The above equation is true for coprime positive integers a a and b b , find a + b a+b .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jun 20, 2016

F = n = 0 8 cos ( ( 2 n + 1 ) π 19 ) \mathfrak F= \sum^{8}_{n=0} \cos \left(\frac{(2n+1)\pi}{19} \right) 2 sin ( π 19 ) F = n = 0 8 2 cos ( ( 2 n + 1 ) π 19 ) sin ( π 19 ) = n = 0 8 ( sin ( 2 ( n + 1 ) π 19 ) sin ( 2 n π 19 ) ) ( A T e l e s c o p i c S e r i e s ) = sin ( 18 π 19 ) F = sin ( 18 π 19 ) 2 sin ( π 19 ) = 1 2 ( sin ( π x ) = sin x ) \small{\begin{aligned}2\sin \left(\frac{\pi}{19} \right)\mathfrak F=& \sum^{8}_{n=0} 2\cos \left(\frac{(2n+1)\pi}{19} \right)\sin \left(\frac{\pi}{19} \right)\\=&\sum^{8}_{n=0} \left(\sin \left(\frac{2(n+1)\pi}{19}\right) -\sin \left(\frac{2n\pi}{19} \right)\right)\\&\\&\large{(\color{#0C6AC7}{\mathcal{A~Telescopic~Series}})}~~~\\&\large{=\sin \left(\frac{18\pi}{19} \right)}\\\large{\implies \mathfrak{F}=}&\large{\dfrac{\sin \left(\frac{18\pi}{19} \right)}{2\sin \left(\frac{\pi}{19} \right)}}\\=&\large{\dfrac{1}{2}}~~~(\small{\because \sin (\pi-x)=\sin x})\end{aligned}}

1 + 2 = 3 \huge\therefore 1+2=\color{#69047E}{\boxed 3}


Generalisation:- \text{Generalisation:-}

r = 1 n cos ( a + r d ) = sin ( n d 2 ) sin ( d 2 ) cos ( a + ( n 1 ) d 2 ) \displaystyle\sum_{r=1}^n\cos (a+rd)=\dfrac{\sin\left(\frac{nd}2\right)}{\sin\left(\frac d2\right)}\cos\left(a+(n-1)\frac d2\right)

(** Can be proved in a similar fashion)

Woah! I haven't seen this derivation before! +1

Pi Han Goh - 4 years, 12 months ago

Log in to reply

Thanks... ¨ \ddot\smile

Rishabh Jain - 4 years, 12 months ago
Chew-Seong Cheong
Jun 20, 2016

Let us consider a general case as follows.

S = n = 0 m 1 cos ( ( 2 n + 1 ) π 2 m + 1 ) = n = 0 m 1 { e ( 2 n + 1 ) π 2 m + 1 i } = { n = 0 m 1 e ( 2 n + 1 ) π 2 m + 1 i } = { e π 2 m + 1 i n = 0 m 1 ( e 2 π 2 m + 1 i ) n } = { e π 2 m + 1 i ( 1 e 2 m π 2 m + 1 i 1 e 2 π 2 m + 1 i ) } = { e π 2 m + 1 i e ( 2 m + 1 ) π 2 m + 1 i 1 e 2 π 2 m + 1 i } = { e π 2 m + 1 i e π i 1 e 2 π 2 m + 1 i } = { e π 2 m + 1 i + 1 ( 1 e π 2 m + 1 i ) ( 1 + e π 2 m + 1 i ) } = { 1 1 e π 2 m + 1 i } = { 1 1 cos ( π 2 m + 1 ) sin ( π 2 m + 1 ) i } = { 1 cos ( π 2 m + 1 ) + sin ( π 2 m + 1 ) i 1 2 cos ( π 2 m + 1 ) + cos 2 ( π 2 m + 1 ) + sin 2 ( π 2 m + 1 ) } = { 1 cos ( π 2 m + 1 ) + sin ( π 2 m + 1 ) i 2 ( 1 cos ( π 2 m + 1 ) ) } = 1 2 \begin{aligned} S & = \sum_{n=0}^{m-1} \cos \left(\frac {(2n+1)\pi}{2m+1} \right) = \sum_{n=0}^{m-1} \Re \left \{e^{\frac {(2n+1)\pi}{2m+1}i} \right \} = \Re \left \{ \sum_{n=0}^{m-1} e^{\frac {(2n+1)\pi}{2m+1}i} \right \} \\ & = \Re \left \{ e^{\frac \pi{2m+1}i} \sum_{n=0}^{m-1} \left(e^{\frac {2\pi}{2m+1}i}\right)^n \right \} = \Re \left \{ e^{\frac \pi{2m+1}i} \left( \frac {1-e^{\frac {2m\pi}{2m+1}i}} {1-e^{\frac {2\pi}{2m+1}i}} \right) \right \} \\ & = \Re \left \{ \frac { e^{\frac \pi{2m+1}i} -e^{\frac {(2m+1)\pi}{2m+1}i}} {1-e^{\frac {2\pi}{2m+1}i}} \right \} = \Re \left \{ \frac { e^{\frac \pi{2m+1}i} -e^{\pi i}} {1-e^{\frac {2\pi}{2m+1}i}} \right \} \\ & = \Re \left \{ \frac { e^{\frac \pi{2m+1}i} + 1} {\left(1-e^{\frac {\pi}{2m+1}i}\right) \left(1+e^{\frac {\pi}{2m+1}i}\right)} \right \} = \Re \left \{ \frac 1 {1-e^{\frac {\pi}{2m+1}i}} \right \} \\ & = \Re \left \{ \frac 1 {1-\cos \left( \frac {\pi}{2m+1} \right) - \sin \left( \frac {\pi}{2m+1} \right)i} \right \} \\ & = \Re \left \{ \frac {1-\cos \left( \frac {\pi}{2m+1} \right) + \sin \left( \frac {\pi}{2m+1} \right)i} {1- 2\cos \left( \frac {\pi}{2m+1} \right) + \cos^2 \left( \frac {\pi}{2m+1} \right) + \sin^2 \left( \frac {\pi}{2m+1} \right)} \right \} \\ & = \Re \left \{ \frac {1-\cos \left( \frac {\pi}{2m+1} \right) + \sin \left( \frac {\pi}{2m+1} \right)i} {2\left(1- \cos \left( \frac {\pi}{2m+1} \right)\right)} \right \} \\ & = \frac 12 \end{aligned}

a + b = 1 + 2 = 3 \implies a + b = 1 + 2 = \boxed{3}

Ali Qureshi
Jun 21, 2016

Consider the geometric progression x + x 3 + x 5 + . . . . . . + x 2 N + 1 x + x^{3} + x^{5}+......+x^{2N+1}

such that n = 0 N \sum_{n=0}^N x 2 n + 1 = x^{2n+1} = x + x 3 + x 5 + . . . . . . + x 2 N + 1 = x + x^{3} + x^{5}+......+x^{2N+1} = x x 2 N + 3 1 x 2 \frac{x-x^{2N+3}}{1-x^{2}}

Now, Put x = cos θ + i sin θ x= \cos\theta + i \sin\theta

n = 0 N \sum_{n=0}^N x 2 n + 1 = x^{2n+1} = x x 2 N + 3 1 x 2 \frac{x-x^{2N+3}}{1-x^{2}}

n = 0 N \sum_{n=0}^N ( cos θ + i sin θ ) 2 n + 1 = (\cos\theta + i \sin\theta )^{2n+1} = ( cos θ + i sin θ ) ( cos θ + i sin θ ) 2 N + 3 1 ( cos θ + i sin θ ) 2 \frac{(\cos\theta + i \sin\theta)-(\cos\theta + i \sin\theta)^{2N+3}}{1-(\cos\theta + i \sin\theta)^{2}}

Using D e M o i v r e s T h e o r e m De Moivre's Theorem

n = 0 N \sum_{n=0}^N cos ( 2 n + 1 ) θ + i sin ( 2 n + 1 ) θ \cos(2n+1)\theta + i \sin(2n+1)\theta = ( cos θ + i sin θ ) ( cos ( 2 N + 3 ) θ + i sin ( 2 N + 3 ) θ ) 1 ( cos 2 θ + i sin 2 θ ) \frac{(\cos\theta + i \sin\theta)-(\cos(2N+3)\theta + i \sin(2N+3)\theta )}{1-( \cos 2\theta + i \sin 2\theta)}

Separating the real terms we have

(After some simplification obviously)

n = 0 N \sum_{n=0}^N cos ( 2 n + 1 ) θ = \cos(2n+1)\theta = sin ( 2 ( N + 1 ) θ ) 2 × sin θ \frac{\sin(2(N+1)\theta)}{2 \times \sin \theta}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...