Trigonometrical Limits

Calculus Level 5

f ( x ) = cos 2 x cos 4 x cos 6 x cos 8 x cos 10 x \large\ f (x) = \cos { 2x } \cos { 4x } \cos { 6x } \cos { 8x } \cos { 10x }

For f ( x ) f(x) as defined above, find the value of lim x 0 1 ( f ( x ) ) 3 55 sin 2 x \displaystyle \lim _{ x \to 0 }{ \frac { 1 - { \left( f\left( x \right) \right) }^{ 3 } }{ 55\sin ^{ 2 }{ x } } } .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x 0 1 ( f ( x ) ) 3 55 sin 2 x A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 3 ( f ( x ) ) 2 f ( x ) 110 sin x cos x Differentiate up and down w.r.t. x . = lim x 0 3 ( f ( x ) ) 2 55 sin ( 2 x ) k = 1 5 2 k sin ( 2 k x ) f ( x ) cos ( 2 k x ) = lim x 0 6 ( f ( x ) ) 3 55 sin ( 2 x ) k = 1 5 k sin ( 2 k x ) cos ( 2 k x ) Note that sin ( 2 k x ) = sin ( 2 x + 2 ( k 1 ) x ) = lim x 0 6 ( f ( x ) ) 3 55 sin ( 2 x ) k = 1 5 k ( sin ( 2 x ) cos ( 2 ( k 1 ) x ) + sin ( 2 ( k 1 ) x ) cos ( 2 x ) cos ( 2 k x ) ) = lim x 0 6 ( f ( x ) ) 3 55 sin ( 2 x ) k = 1 5 k ( sin ( 2 x ) cos ( 2 ( k 1 ) x ) + ( sin ( 2 k x ) cos ( 2 x ) sin ( 2 x ) cos ( 2 k x ) ) cos ( 2 x ) cos ( 2 k x ) ) = lim x 0 6 ( f ( x ) ) 3 55 k = 1 5 k ( cos ( 2 ( k 1 ) x ) cos ( 2 k x ) + tan ( 2 k x ) cos 2 ( 2 x ) sin ( 2 x ) cos ( 2 x ) ) = lim x 0 6 ( f ( x ) ) 3 55 k = 1 5 k ( cos ( 2 ( k 1 ) x ) cos ( 2 k x ) + tan ( 2 k x ) ( 1 sin 2 ( 2 x ) ) sin ( 2 x ) cos ( 2 x ) ) = lim x 0 6 ( f ( x ) ) 3 55 k = 1 5 k ( cos ( 2 ( k 1 ) x ) cos ( 2 k x ) + tan ( 2 k x ) sin ( 2 x ) tan ( 2 k x ) sin ( 2 x ) cos ( 2 x ) ) = lim x 0 6 ( f ( x ) ) 3 55 k = 1 5 k ( cos ( 2 ( k 1 ) x ) cos ( 2 k x ) tan ( 2 k x ) sin ( 2 x ) cos ( 2 x ) ) + lim x 0 6 ( f ( x ) ) 3 55 k = 1 5 k tan ( 2 k x ) sin ( 2 x ) A 0/0 case, L’H o ˆ pital’s rule applies. = 6 55 k = 1 5 k ( 1 0 1 ) + lim x 0 6 ( f ( x ) ) 3 55 k = 1 5 k ( 2 k sec 2 ( 2 k x ) 2 cos ( 2 x ) ) Differentiate up and down w.r.t. x . = 0 + 6 55 k = 1 5 k 2 = 6 55 × 5 ( 6 ) ( 11 ) 6 = 6 \begin{aligned} L & = \lim_{x \to 0} \frac {1-(f(x))^3}{55\sin^2 x} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {-3(f(x))^2f'(x)}{110\sin x\cos x} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x. \\ & = \lim_{x \to 0} - \frac {3(f(x))^2}{55\sin (2x)} \sum_{k=1}^5 \frac {- 2k \sin (2kx) f(x)}{\cos (2kx)} \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55\sin (2x)} \sum_{k=1}^5 \frac {k \color{#3D99F6}\sin (2kx)}{\cos (2kx)} & \small \color{#3D99F6} \text{Note that }\sin (2kx) = \sin (2x + 2(k-1)x) \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55\sin (2x)} \sum_{k=1}^5 k \left( \frac {\color{#3D99F6}\sin (2x)\cos(2(k-1)x) + \sin(2(k-1)x)\cos(2x)}{\cos (2kx)} \right) \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55\sin (2x)} \sum_{k=1}^5 k \left( \frac {\sin (2x)\cos(2(k-1)x) + (\sin(2kx)\cos(2x)-\sin(2x)\cos(2kx))\cos(2x)}{\cos (2kx)} \right) \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55} \sum_{k=1}^5 k \left( \frac {\cos(2(k-1)x)}{\cos (2kx)} + \frac {\tan(2kx)\cos^2(2x)}{\sin(2x)}-\cos(2x) \right) \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55} \sum_{k=1}^5 k \left( \frac {\cos(2(k-1)x)}{\cos (2kx)} + \frac {\tan(2kx)\left(1-\sin^2(2x)\right)}{\sin(2x)}-\cos(2x) \right) \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55} \sum_{k=1}^5 k \left( \frac {\cos(2(k-1)x)}{\cos (2kx)} + \frac {\tan(2kx)}{\sin(2x)}- \tan(2kx)\sin(2x)-\cos(2x) \right) \\ & = \lim_{x \to 0} \frac {6(f(x))^3}{55} \sum_{k=1}^5 k \left( \frac {\cos(2(k-1)x)}{\cos (2kx)} - \tan(2kx)\sin(2x)-\cos(2x) \right) + \color{#3D99F6} \lim_{x \to 0} \frac {6(f(x))^3}{55} \sum_{k=1}^5 \frac {k\tan(2kx)}{\sin(2x)} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \frac 6{55} \sum_{k=1}^5 k \left(1 - 0 -1 \right) + \color{#3D99F6} \lim_{x \to 0} \frac {6(f(x))^3}{55} \sum_{k=1}^5 k \left(\frac {2k\sec^2(2kx)}{2\cos(2x)} \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x. \\ & = 0 + \frac {6}{55} \sum_{k=1}^5 k^2 = \frac 6{55} \times \frac {5(6)(11)}6 = \boxed{6} \end{aligned}

@Chew-Seong Cheong I attempted using Taylor series but it does not produce same answer u being calculus expert, can u help explain why so thanks

D S - 3 years, 5 months ago

Log in to reply

I tried that too but the ( f ( x ) ) 3 (f(x))^3 is very complicated and hence prone to mistakes.

Chew-Seong Cheong - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...