Trigonometry #01

Algebra Level 4

For 0 < ϕ π 2 0<\phi \le \cfrac { \pi }{ 2 } , if x = n = 0 c o s 2 n ϕ x=\sum _{ n=0 }^{ \infty }{ { cos }^{ 2n } } \phi , y = n = 0 s i n 2 n ϕ y=\sum _{ n=0 }^{ \infty }{ { sin }^{ 2n } } \phi , z = n = 0 c o s 2 n ϕ . s i n 2 n ϕ z=\sum _{ n=0 }^{ \infty }{ { { cos }^{ 2n }\phi .sin }^{ 2n } } \phi , then

Source : IIT JEE, 1992

(D) x y z = x + y z xyz\quad =\quad x\quad +\quad yz (C) x y z = x + y + z xyz\quad =\quad x\quad +\quad y\quad +\quad z B o t h ( A ) a n d ( C ) Both (A) and (C) (B) x y z = x y + z xyz\quad =\quad xy\quad +\quad z Both (B) and (C) (A) x y z = x z + y xyz\quad =\quad xz\quad +\quad y Both (B) and (D) Both (A) and (B)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Saurav Pal
Mar 1, 2015

All are infinite geometric progression with common ratio < < 1
x = 1 1 c o s 2 ϕ = 1 s i n 2 ϕ , y = 1 c o s 2 ϕ , z = 1 1 c o s 2 ϕ s i n 2 ϕ . N o w , x y + z = 1 s i n 2 ϕ c o s 2 ϕ ( 1 s i n 2 ϕ c o s 2 ϕ ) = x y z . x + y = s i n 2 ϕ + c o s 2 ϕ s i n 2 ϕ c o s 2 ϕ = x y . x + y + z = x y z . x=\cfrac { 1 }{ 1-{ cos }^{ 2 }\phi } =\cfrac { 1 }{ { sin }^{ 2 }\phi } \quad ,\quad y=\cfrac { 1 }{ { cos }^{ 2 }\phi } \quad ,\quad z=\cfrac { 1 }{ { 1-cos }^{ 2 }\phi { sin }^{ 2 }\phi } .\quad \\ Now,\quad xy+z=\frac { 1 }{ { sin }^{ 2 }\phi { cos }^{ 2 }\phi (1-{ sin }^{ 2 }\phi { cos }^{ 2 }\phi ) } =xyz.\quad \quad \\ x+y=\cfrac { { sin }^{ 2 }\phi +{ cos }^{ 2 }\phi }{ { sin }^{ 2 }\phi { cos }^{ 2 }\phi } =xy.\quad \\ \therefore \quad x+y+z=xyz.\quad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...