Trigonometry! #13

Geometry Level 3

The least value of 1 2 + 2 3 csc 2 θ + 3 8 sec 2 θ \frac {1}{2} + \frac {2}{3} \csc^{2}\theta + \frac {3}{8} \sec^{2} \theta is?

This problem is part of the set Trigonometry .

61 48 \frac {61}{48} 61 24 \frac {61}{24} 13 24 \frac {13}{24} 61 25 \frac {61}{25}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Jan 30, 2015

Using csc 2 θ = 1 + cot 2 θ \csc^{2} \theta = 1 + \cot^{2} \theta and s e c 2 θ = 1 + tan 2 θ sec^{2} \theta= 1+\tan^{2} \theta , the expression can be simplified to 37 24 + 2 3 cot 2 θ + 3 8 tan 2 θ \frac {37}{24} + \frac {2}{3} \cot^{2} \theta + \frac {3}{8} \tan^{2} \theta .

Now, for 2 3 cot 2 θ + 3 8 tan 2 θ \frac {2}{3} \cot^{2} \theta + \frac {3}{8} \tan^{2} \theta , we use A.M.-G.M. inequality.

2 3 cot 2 θ + 3 8 tan 2 θ 2 ( 2 3 cot 2 θ ) ( 3 8 tan 2 θ ) \frac {2}{3} \cot^{2} \theta + \frac {3}{8} \tan^{2}\theta ≥ 2\sqrt{\left(\frac {2}{3} \cot^{2}\theta \right)\left(\frac {3}{8} \tan^{2} \theta \right)}

2 3 cot 2 θ + 3 8 tan 2 θ 1 \frac {2}{3} \cot^{2} \theta + \frac {3}{8} \tan^{2}\theta ≥ 1

Hence the minimum value of the expression is 37 24 + 1 = 61 24 \frac {37}{24} + 1 = \boxed {\frac{61}{24}}

Nice solution changing cosec^2 and sec^2 in the terms of tan and cot and then applying AM -GM is a nice approach.

Abhishek Chopra - 6 years ago
Chew-Seong Cheong
Jan 13, 2015

Let f ( θ ) = 1 2 + 2 3 csc 2 θ + 3 8 sec 2 θ = 1 2 + 2 3 sin 2 θ + 3 8 cos 2 θ \space f(\theta) = \frac{1}{2}+\frac{2}{3}\csc^2{\theta}+\frac{3}{8}\sec^2{\theta} = \frac{1}{2}+\frac{2}{3\sin^2{\theta}}+\frac{3}{8\cos^2{\theta}} .

Then, d f ( θ ) d θ = ( 2 ) ( 2 cos θ ) 3 sin 3 θ + ( 2 ) ( 3 ) ( sin θ ) 8 cos 3 θ = 9 sin 4 θ 16 cos 4 θ 24 sin 3 θ cos 3 θ \space \dfrac {df(\theta)}{d\theta} = \dfrac {(-2)(2 \cos{\theta})}{3\sin^3{\theta}} + \dfrac {(-2)(3)(-\sin{\theta})}{8\cos^3{\theta}} = \dfrac {9\sin^4{\theta} - 16\cos^4{\theta}}{24\sin^3{\theta}\cos^3{\theta}}

When f ( θ ) \space f(\theta) is minimum, d f ( θ ) d θ = 0 \space \frac {df(\theta)}{d\theta} = 0

9 sin 4 θ 16 cos 4 θ = 0 tan 4 θ = 16 9 tan 2 θ = 4 3 \Rightarrow 9\sin^4{\theta} - 16\cos^4{\theta} = 0\quad \Rightarrow \tan^4 {\theta} = \frac {16}{9}\quad \Rightarrow \tan^2{\theta} = \frac {4}{3}

sin 2 θ = 4 7 cos 2 θ = 3 7 f ( θ ) = 1 2 + 2 3 ( 7 4 ) + 3 8 ( 7 3 ) = 61 24 \Rightarrow \sin^2{\theta} = \frac {4}{7}\quad \Rightarrow \cos^2{\theta} = \frac {3}{7} \quad \Rightarrow f(\theta) = \frac{1}{2}+\frac{2}{3}(\frac{7}{4}) +\frac{3}{8}(\frac{7}{3}) = \boxed{\frac{61}{24}}

If d f ( θ ) d θ = 0 \dfrac{df(\theta)}{d \theta} = 0 at θ \theta , the corresponding point on the curve is not necessarily a minimum point.

Zuriel Aquino - 4 years, 2 months ago

Log in to reply

You are right. Need to check d 2 f ( θ ) d θ > 0 \dfrac {d^2f(\theta)}{d\theta} > 0 .

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...