Trigonometri #1

Geometry Level 1

1 cos 2 θ + 1 1 + sin 2 θ + 2 1 + sin 4 θ + 4 1 + sin 8 θ \large\frac { 1 }{ \cos ^{ 2 }{ \theta } } +\frac { 1 }{ 1+\sin ^{ 2 }{ \theta } } +\frac { 2 }{ 1+\sin ^{ 4 }{ \theta } } +\frac { 4 }{ 1+\sin ^{ 8 }{ \theta } }

If sin 16 θ = 1 5 \large \sin ^{ 16 }{ \theta } = \frac { 1 }{ 5 } , what is the value of the expression above?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prakhar Gupta
May 31, 2015

Lets start with the expression that we have to solve. 1 cos 2 θ + 1 1 + sin 2 θ + 2 1 + sin 4 θ + 4 1 + sin 8 θ \dfrac{1}{\cos^{2}\theta} +\dfrac{1}{1+\sin^{2}\theta} + \dfrac{2}{1+\sin^{4}\theta}+\dfrac{4}{1+\sin^{8}\theta} Put cos 2 θ = 1 sin 2 θ \cos^{2}\theta = 1-\sin^{2}\theta . 1 1 sin 2 θ + 1 1 + sin 2 θ + 2 1 + sin 4 θ + 4 1 + sin 8 θ \dfrac{1}{1-\sin^{2}\theta} + \dfrac{1}{1+\sin^{2}\theta} + \dfrac{2}{1+\sin^{4}\theta}+\dfrac{4}{1+\sin^{8}\theta} Combing first two terms:- 2 1 sin 4 θ + 2 1 + sin 4 θ + 4 1 + sin 8 θ \dfrac{2}{1-\sin^{4}\theta}+\dfrac{2}{1+\sin^{4}\theta}+\dfrac{4}{1+\sin^{8}\theta} Again combing first two terms:- 4 1 sin 8 θ + 4 1 + sin 8 θ \dfrac{4}{1-\sin^{8}\theta}+\dfrac{4}{1+\sin^{8}\theta} Again combing these two terms:- 8 1 sin 16 θ \dfrac{8}{1-\sin^{16}\theta} Now we know the value of sin 16 θ = 1 5 \sin^{16}\theta = \dfrac{1}{5} . Replacing it in above expression:- 8 1 1 5 \dfrac{8}{1-\dfrac{1}{5}} Multiplying numerator and denominator by 5 5 :- = 40 5 1 =\dfrac{40}{5-1} = 40 4 =\dfrac{40}{4} = 10 =\boxed{10}

Nice solution \small ^\wedge {\smile} ^\wedge

Fuad Muhammad - 6 years ago
Ishan Pednekar
Aug 17, 2020

Simply replace (costheta)^{2} by (1-sintheta)^{2} and solve from left to right

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...