Trigonometry (1)

Geometry Level 3

cos 2 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 \large \cos \dfrac{2π}{15} \ \cos \dfrac{4π}{15} \ \cos \dfrac{8π}{15} \ \cos \dfrac{16π}{15}

Find the value of the expression above to 4 decimal places.


The answer is 0.0625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Apr 15, 2017

cos 2 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 \cos \dfrac{2π}{15} \cdot \cos \dfrac{4π}{15} \cdot \cos \dfrac{8π}{15} \cdot \cos \dfrac{16π}{15} can be reduced by using multiple angle formula sin 2 θ = 2 sin θ cos θ \sin 2 \theta = 2\sin \theta \cos \theta .

Ok so our expression is cos 2 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 \cos \dfrac{2π}{15} \cdot \cos \dfrac{4π}{15} \cdot \cos \dfrac{8π}{15} \cdot \cos \dfrac{16π}{15} Take θ = π 15 \theta = \dfrac{\pi}{15}

Now

cos 2 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 \cos \dfrac{2π}{15} \cdot \cos \dfrac{4π}{15} \cdot \cos \dfrac{8π}{15} \cdot \cos \dfrac{16π}{15}

cos 2 θ cos 4 θ cos 8 θ cos 16 θ \implies \cos {2 \theta} \cdot \cos {4 \theta} \cdot \cos {8\theta} \cdot \cos {16 \theta}

1 2 sin 2 θ 2 sin 2 θ × cos 2 θ cos 4 θ cos 8 θ cos 16 θ \implies \dfrac{1}{2 \sin 2\theta} 2\sin 2\theta \times \cos {2 \theta} \cdot \cos {4 \theta} \cdot \cos {8\theta} \cdot \cos {16 \theta}

1 2 sin 2 θ sin 4 θ cos 4 θ cos 8 θ cos 16 θ \implies \dfrac{1}{2 \sin 2\theta} \sin 4\theta \cdot \cos {4 \theta} \cdot \cos {8\theta} \cdot \cos {16 \theta}

1 2 2 sin 2 θ 2 sin 4 θ cos 4 θ cos 8 θ cos 16 θ \implies \dfrac{1}{2^2 \sin 2\theta } 2\sin 4\theta \cdot \cos {4 \theta} \cdot \cos {8\theta} \cdot \cos {16 \theta}

1 2 2 sin 2 θ sin 8 θ cos 8 θ cos 16 θ \implies \dfrac{1}{2^2 \sin 2\theta } \sin 8\theta \cdot \cos {8\theta} \cdot \cos {16 \theta}

1 2 3 sin 2 θ 2 sin 8 θ cos 8 θ cos 16 θ \implies \dfrac{1}{2^3 \sin 2\theta } 2\sin 8\theta \cdot \cos {8\theta} \cdot \cos {16 \theta}

1 2 3 sin 2 θ sin 16 θ cos 16 θ \implies \dfrac{1}{2^3 \sin 2\theta } \sin 16\theta \cdot \cos {16 \theta}

1 2 4 sin 2 θ 2 sin 16 θ cos 16 θ \implies \dfrac{1}{2^4 \sin 2\theta } 2\sin 16\theta \cdot \cos {16 \theta}

1 2 4 sin 2 θ sin 32 θ \implies \dfrac{1}{2^4 \sin 2\theta } \sin 32\theta

Now putting value of θ = π 15 \theta = \dfrac{\pi}{15} , we have,

1 2 4 sin 2 π 15 sin 32 π 15 = P ( S a y ) \implies \dfrac{1}{2^4 \sin \dfrac{2\pi}{15}} \sin \dfrac{32\pi}{15} = P(Say)

Now sin 32 π 15 sin ( 2 π + π 15 ) sin π 15 \sin \dfrac{32\pi}{15} \implies \sin (2\pi+ \dfrac{\pi}{15}) \implies \sin \dfrac{\pi}{15}

P reduces to

1 2 4 1 16 0.0625 ( A n s ) \dfrac{1}{2^4} \implies \dfrac{1}{16} \implies \boxed{0.0625}(Ans)

Thanks you very much... (+1)

Rahil Sehgal - 4 years, 1 month ago

Log in to reply

Welcome very much

Md Zuhair - 4 years, 1 month ago
Chew-Seong Cheong
Apr 17, 2017

P = cos 2 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 = sin 2 π 15 cos 2 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 sin 2 π 15 = sin 4 π 15 cos 4 π 15 cos 8 π 15 cos 16 π 15 2 sin 2 π 15 = sin 8 π 15 cos 8 π 15 cos 16 π 15 4 sin 2 π 15 = sin 16 π 15 cos 16 π 15 8 sin 2 π 15 = sin 32 π 15 16 sin 2 π 15 = sin ( 2 π + 2 π 15 ) 16 sin 2 π 15 = sin 2 π 15 16 sin 2 π 15 = 1 16 = 0.0625 \begin{aligned} P & = \cos \frac {2\pi}{15} \cos \frac {4\pi}{15} \cos \frac {8\pi}{15} \cos \frac {16\pi}{15} \\ & = \frac {{\color{#3D99F6} \sin \frac {2\pi}{15}}\cos \frac {2\pi}{15} \cos \frac {4\pi}{15} \cos \frac {8\pi}{15} \cos \frac {16\pi}{15}}{\color{#3D99F6} \sin \frac {2\pi}{15}} \\ & = \frac {{\color{#3D99F6} \sin \frac {4\pi}{15}}\cos \frac {4\pi}{15} \cos \frac {8\pi}{15} \cos \frac {16\pi}{15}}{{\color{#3D99F6}2} \sin \frac {2\pi}{15}} \\ & = \frac {{\color{#3D99F6} \sin \frac {8\pi}{15}} \cos \frac {8\pi}{15} \cos \frac {16\pi}{15}}{{\color{#3D99F6}4} \sin \frac {2\pi}{15}} \\ & = \frac {{\color{#3D99F6} \sin \frac {16\pi}{15}}\cos \frac {16\pi}{15}}{{\color{#3D99F6}8} \sin \frac {2\pi}{15}} \\ & = \frac {\color{#3D99F6}\sin \frac {32\pi}{15}}{{\color{#3D99F6}16} \sin \frac {2\pi}{15}} \\ & = \frac {\color{#3D99F6}\sin \left(2\pi + \frac {2\pi}{15}\right)}{16 \sin \frac {2\pi}{15}} \\ & = \frac {\color{#3D99F6}\sin \frac {2\pi}{15}}{16 \sin \frac {2\pi}{15}} \\ & = \frac 1{16} = \boxed{0.0625} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...