Does Sophie Germain help?

Geometry Level 3

sin 4 ( 1 5 ) + 4 cos 2 ( 1 5 ) cos 4 ( 1 5 ) + 4 sin 2 ( 1 5 ) = ? \large \sqrt{\sin^{4}( 15^\circ )+4 \cos^{2} ( 15^\circ ) }-\sqrt{\cos^{4} ( 15^\circ )+ 4 \sin^{2} ( 15^\circ )} = \ ?

2 2 \frac{\sqrt{2}}{2} 2 3 3 \frac{2\sqrt{3}}{3} 3 2 \frac{\sqrt{3}}{2} 3 3 \frac{\sqrt{3}}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
May 6, 2015

s i n 2 x = 1 c o s 2 x 2 a n d c o s 2 x = 1 + c o s 2 x 2 sin^{2}x=\frac{1-cos2x}{2}~and~cos^{2}x=\frac{1+cos2x}{2}

here 30 30 means 3 0 o 30^{o} just to avoid typing

( 1 c o s 30 2 ) 2 + 4 ( 1 + c o s 30 2 ) ( 1 + c o s 30 2 ) 2 + 4 ( 1 c o s 30 2 ) \sqrt{(\frac{1-cos30}{2})^{2}+4(\frac{1+cos30}{2})}-\sqrt{(\frac{1+cos30}{2})^{2}+4(\frac{1-cos30}{2})}

after expanding the square and and simplifying

we get ( c o s 30 + 3 2 ) 2 ( c o s 30 3 2 ) 2 \large{\sqrt{(\frac{cos30+3}{2})^{2}}-\sqrt{(\frac{cos30-3}{2})^{2}}}

c o s 30 + 3 2 c o s 30 3 2 \large{|\frac{cos30+3}{2}|-|\frac{cos30-3}{2}|}

c o s 30 + 3 2 ( 3 c o s 30 2 ) \large{\frac{cos30+3}{2}-(\frac{3-cos30}{2})}

2 c o s 30 2 = 3 2 \huge{\boxed{\frac{2cos30}{2}=\frac{\sqrt{3}}{2}}}

Moderator note:

Standard approach. Well done.

Nicely done. I did it a different way but unfortunately ended up getting an incorrect answer, which is really bothering me. Here's how I did it:

Let y= sqrt[((1-cos²(15°))²+4cos²(15°))] - sqrt[(cos²(15°))²+4-4cos²(15°))]

I let u= cos²(15°)

So y= sqrt [(1-u)²+4u] - sqrt[u²-4u+4]

So y= sqrt[u²+2u+1] - sqrt[u²-4u+4]

So y= sqrt[(u+1)²] - sqrt[(u-2)²]

So y= (u+1)-(u-2)

Thus, y=3

If possible, could you please identify the major error that I appear to have made?

Aran Pasupathy - 6 years ago
Aditya Kumar
May 7, 2015

sin 4 ( 1 5 ) + 4 cos 2 ( 1 5 ) \sqrt{\sin^{4}(15^\circ)+4\cos^{2}(15^\circ)} = sin 4 ( 1 5 ) + 4 ( 1 sin 2 ( 1 5 ) ) \sqrt{\sin^{4}(15^\circ)+4(1-\sin^{2}(15^\circ))} = ( 2 sin 2 ( 1 5 ) ) 2 \sqrt{(2-\sin^{2}(15^\circ))^2} = 2 sin 2 ( 1 5 ) 2-\sin^{2}(15^\circ)

Similiarly,

cos 4 ( 1 5 ) + 4 sin 2 ( 1 5 ) \sqrt{\cos^{4}(15^\circ)+4\sin^{2}(15^\circ)} = cos 4 ( 1 5 ) + 4 ( 1 cos 2 ( 1 5 ) ) \sqrt{\cos^{4}(15^\circ)+4(1-\cos^{2}(15^\circ))} = ( 2 cos 2 ( 1 5 ) ) 2 \sqrt{(2-\cos^{2}(15^\circ))^2} = 2 cos 2 ( 1 5 ) 2-\cos^{2}(15^\circ)

The desired difference therefore is: cos 2 ( 1 5 ) sin 2 ( 1 5 ) \cos^{2}(15^\circ)-\sin^{2}(15^\circ) = cos ( 2 × 1 5 ) \cos(2 \times 15^\circ) = cos ( 3 0 ) \cos(30^\circ) = 3 2 \frac{\sqrt{3}}{2} .

Moderator note:

That was unexpected. Superb!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...