Trigonometry #107

Geometry Level 2

For θ ( 0 , π 2 ) \theta\in\left(0,\frac{\pi}{2}\right) , if x sin 3 θ + y cos 3 θ = sin θ cos θ x\sin^{3}\theta+y\cos^{3}\theta=\sin\theta\cos\theta and x sin θ = y cos θ x\sin\theta=y\cos\theta then which of the following holds true?

This problem is part of the set Trigonometry .

x 2 y 2 = 1 x^{2}-y^{2}=1 x 2 + y 2 = 1 x^{2}+y^{2}=1 x 3 + y 3 = 1 x^{3}+y^{3}=1 x 4 + y 4 = 1 x^{4}+y^{4}=1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omkar Kulkarni
Feb 12, 2015

x sin 3 θ + y cos 3 θ = sin θ cos θ x\sin^{3}\theta+y\cos^{3}\theta=\sin\theta\cos\theta

x sin 3 θ + ( y cos θ ) ( cos 2 θ ) = sin θ cos θ x\sin^{3}\theta+(y\cos\theta)(\cos^{2}\theta)=\sin\theta\cos\theta

x sin 3 θ + ( x sin θ ) ( cos 2 θ ) = sin θ cos θ x\sin^{3}\theta+(x\sin\theta)(\cos^{2}\theta)=\sin\theta\cos\theta

x sin θ ( sin 2 θ + cos 2 θ ) = sin θ cos θ x\sin\theta(\sin^{2}\theta+\cos^{2}\theta)=\sin\theta\cos\theta

x sin θ = sin θ cos θ x\sin\theta=\sin\theta\cos\theta

x = cos θ x=\cos\theta

Similarly we can obtain the result y = cos θ y=\cos\theta

x 2 + y 2 = 1 \therefore\boxed{x^{2}+y^{2}=1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...