If then find the value of .
This problem is part of the set Trigonometry .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The equation can be rewritten as
sin ( x ) + 3 cos ( x ) = − sin ( y ) + 3 cos ( y )
⟹ 2 1 sin ( x ) + 2 3 cos ( x ) = − 2 1 sin ( y ) + 2 3 cos ( y )
⟹ cos ( 3 π ) sin ( x ) + sin ( 3 π ) cos ( x ) = cos ( 3 2 π ) sin ( y ) + sin ( 3 2 π ) cos ( y )
⟹ sin ( x + 3 π ) = sin ( y + 3 2 π ) ,
and so either
(i) x + 3 π = y + 3 2 π + 2 n π ⟹ x = y + 3 π + 2 n π for any integer n , or
(ii) x + 3 π = π − ( y + 3 2 π ) + 2 n π ⟹ x = − y + 2 n π for any integer n .
In case (i) we would then have sin ( 3 x ) = sin ( 3 y + π + 6 n π ) = − sin ( 3 y ) , and in case (ii) we would then have sin ( 3 x ) = sin ( − 3 y + 6 n π ) = − sin ( 3 y ) , and thus in either case we find that
sin ( 3 y ) + sin ( 3 x ) = sin ( 3 y ) − sin ( 3 y ) = 0 .