Trigonometry #134

Geometry Level 3

For x + y + z = π x+y+z=\pi , if tan x tan z = 2 \tan x \tan z = 2 and tan y tan z = 18 \tan y \tan z = 18 , find the value of tan 2 z \tan^{2} z .

This problem is part of the set Trigonometry .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Manish Dash
May 25, 2015

F o r x + y + z = π , w e k n o w t h a t t a n x + t a n y + t a n z = t a n x × t a n y × t a n z W e k n o w t a n x × t a n z = 2 t a n x + t a n y + t a n z = 2 t a n y = > t a n x + t a n z = t a n y > e q ( 1 ) W e k n o w t a n y × t a n z = 18 t a n x + t a n y + t a n z = 18 t a n x = > t a n y + t a n z = 17 t a n x > e q ( 2 ) F r o m e q ( 1 ) a n d e q ( 2 ) , w e g e t t a n z = 8 t a n x t a n x = 1 2 = > t a n z = 4 t a n 2 z = 16 For\quad x+y+z=\pi ,\quad we\quad know\quad that\\ tan\quad x\quad +\quad tan\quad y\quad +\quad tan\quad z\quad =\quad tan\quad x\quad \times \quad tan\quad y\quad \times \quad tan\quad z\\ \\ We\quad know\quad tan\quad x\quad \times \quad tan\quad z\quad =\quad 2\\ \therefore \quad tan\quad x\quad +\quad tan\quad y\quad +\quad tan\quad z\quad =\quad 2tan\quad y\\ =>\quad tan\quad x\quad +\quad tan\quad z\quad =\quad tan\quad y\quad \quad ->\quad eq(1)\\ \\ We\quad know\quad tan\quad y\quad \times \quad tan\quad z\quad =\quad 18\\ \quad \therefore \quad tan\quad x\quad +\quad tan\quad y\quad +\quad tan\quad z\quad =\quad 18tan\quad x\\ =>\quad tan\quad y\quad +\quad tanz\quad =\quad 17tan\quad x\quad ->eq(2)\\ From\quad eq\quad (1)\quad and\quad eq(2),\quad we\quad get\quad tan\quad z\quad =\quad 8tan\quad x\\ \\ \therefore \quad tan\quad x\quad =\quad \frac { 1 }{ 2 } \quad =>\quad tan\quad z\quad =\quad 4\quad \quad \\ \boxed { \therefore \quad { tan }^{ 2 }z\quad =\quad 16\quad }

Moderator note:

It is not true that tan x = 1 2 \tan x = \frac{1}{2} . Do you see where he made the error?

Can someone prove that tan x + tan y + tan z = tan x tan y tan z \tan x +\tan y+ \tan z = \tan x \tan y \tan z ?

Anik Mandal - 5 years, 4 months ago
Omkar Kulkarni
Feb 20, 2015

For x + y + z = π x+y+z=\pi , we know that cot x cot y + cot y cot z + cot x cot z = 1 \cot x \cot y + \cot y \cot z + \cot x \cot z = 1 Given tan x tan z = 2 \tan x \tan z = 2 and tan y tan z = 18 \tan y \tan z = 18 , we get cot x cot z = 1 2 \cot x \cot z = \frac{1}{2} and cot y cot z = 1 18 \cot y \cot z = \frac{1}{18} . Hence,

cot x cot y + 1 18 + 1 2 = 1 cot x cot y + 5 9 = 1 cot x cot y = 4 9 \cot x \cot y + \frac{1}{18} + \frac{1}{2} = 1 \\ \cot x \cot y + \frac{5}{9} = 1 \\ \cot x \cot y = \frac{4}{9}

Now, we have the following equations. cot x cot y = 4 9 cot y cot z = 1 18 cot z cot x = 1 2 \cot x \cot y = \frac{4}{9} \\ \cot y \cot z = \frac{1}{18} \\ \cot z \cot x = \frac{1}{2} We shall solve these simultaneously to find the value of cot z \cot z .

cot x = 1 2 cot z a n d cot y = 1 18 cot z ( 1 2 cot z ) ( 1 18 cot z ) = 4 9 1 36 cot 2 z = 4 9 1 cot 2 z = 16 tan 2 z = 16 \cot x = \frac{1}{2\cot z}~ and ~\cot y = \frac{1}{18\cot z} \\ \therefore \left(\frac{1}{2\cot z}\right)\left(\frac{1}{18\cot z}\right)=\frac{4}{9} \\ \frac{1}{36\cot^{2}z}=\frac{4}{9} \\ \frac{1}{\cot^{2}z}=16 \\ \boxed{\tan^{2}z=16}

Given that { tan x tan z = 2 . . . ( 1 ) tan y tan z = 18 . . . ( 2 ) \begin{cases} \tan x \tan z = 2 & ...(1) \\ \tan y \tan z = 18 & ...(2) \end{cases}

( 2 ) ( 1 ) : tan y tan z tan x tan z = tan y tan x = 18 2 = 9 tan y = 9 tan x \dfrac {(2)}{(1)}: \quad \dfrac {\tan y \tan z}{\tan x \tan z} = \dfrac {\tan y}{\tan x} = \dfrac {18}2 = 9 \implies \color{#D61F06}\tan y = 9 \tan x

Since x + y + z = π x+y+z=\pi :

tan x tan y tan z = tan x + tan y + tan z Given that tan y tan z = 18 18 tan x = tan x + 9 tan x + tan z Note that tan y = 9 tan x tan z = 8 tan x \begin{aligned} \implies \tan x {\color{#3D99F6}\tan y \tan z} & = \tan x + {\color{#D61F06}\tan y} + \tan z & \small \color{#3D99F6} \text{Given that }\tan y \tan z = 18 \\ {\color{#3D99F6}18} \tan x & = \tan x + {\color{#D61F06}9\tan x} + \tan z & \small \color{#D61F06} \text{Note that }\tan y = 9\tan x \\ \implies \tan z & = 8 \tan x \end{aligned}

Now consider,

tan z = tan ( π x y ) Since x + y + z = π = tan ( x + y ) and tan ( π θ ) = tan θ tan z = tan x + tan y 1 tan x tan y tan z = 8 tan x 8 tan x = tan x + 9 tan x 9 tan 2 x 1 4 = 5 9 tan 2 x 1 36 tan 2 x 4 = 5 tan 2 x = 1 4 tan 2 z = ( 8 tan x ) 2 = 64 × 1 4 = 16 \begin{aligned} \tan \color{#3D99F6} z & = \tan ({\color{#3D99F6} \pi - x - y}) & \small \color{#3D99F6} \text{Since }x+y+z=\pi \\ & = - \tan (x+y) & \small \color{#3D99F6} \text{and } \tan (\pi - \theta) = - \tan \theta \\ \implies \color{#3D99F6} \tan z & = - \frac {\tan x + \tan y}{1-\tan x \tan y} & \small \color{#3D99F6} \tan z = 8 \tan x \\ \color{#3D99F6} 8 \tan x & = \frac {\tan x + 9\tan x}{9\tan^2 x - 1} \\ 4 & = \frac 5{9\tan^2 x - 1} \\ 36\tan^2 x - 4 & = 5 \\ \tan^2 x & = \frac 14 \\ \implies \tan^2 z & = (8 \tan x)^2 \\ & = 64 \times \frac 14 = \boxed {16} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...