Trigonometry! #142

Geometry Level 3

If in a Δ A B C \Delta ABC , 2 cos A a + cos B b + 2 cos C c = a b c + b a c \frac{2\cos A}{a}+\frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc}+\frac{b}{ac} then find A \angle A .

This problem is part of the set Trigonometry .

6 0 60^{\circ} 4 5 45^{\circ} 9 0 90^{\circ} 3 0 30^{\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
May 6, 2015

First, note that 2 b c cos A = b 2 + c 2 a 2 ( 1 ) 2 a c cos B = a 2 + c 2 b 2 ( 2 ) 2 a b cos C = a 2 + b 2 c 2 ( 3 ) ~~~2bc\cos A=b^2+c^2-a^2~~~~(1)\\~~~2ac\cos B=a^2+c^2-b^2~~~~(2)\\~~~2ab\cos C=a^2+b^2-c^2~~~~(3)

Now, multiplying all terms on the question by a b c abc , the equation becomes

2 b c cos A + a c cos B + 2 a b cos C = a 2 + b 2 2bc\cos A+ac\cos B+2ab\cos C=a^2+b^2

Subtitution ( 1 ) (1) and ( 3 ) (3) then ( 2 ) (2) to obtain

( b 2 + c 2 a 2 ) + a c cos B + ( a 2 + b 2 c 2 ) = a 2 + b 2 2 a c cos B = 2 ( a 2 b 2 ) a 2 + c 2 b 2 = 2 ( a 2 b 2 ) a 2 = b 2 + c 2 = b 2 + c 2 2 b c cos 9 0 = b 2 + c 2 2 b c cos A \left(b^2+c^2-a^2\right)+ac\cos B+\left(a^2+b^2-c^2\right)=a^2+b^2\\2ac\cos B=2(a^2-b^2)\\a^2+c^2-b^2=2(a^2-b^2)\\a^2=b^2+c^2=b^2+c^2-2bc\cos90^\circ=b^2+c^2-2bc\cos A

Thus, A = 9 0 \boxed{\angle A=90^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...