Trigonometry! #149

Geometry Level 3

Find the positive integer n n such that sin ( π 2 n ) + cos ( π 2 n ) = n 2 \large \sin\left(\frac{\pi}{2n}\right)+\cos\left(\frac{\pi}{2n}\right)=\frac{\sqrt{n}}{2}

This problem is part of the set Trigonometry .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Robert Szafarczyk
Apr 28, 2018

Square both sides of the equation (n is positive so both sides are positive) to get (using identities sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 and 2 sin x cos x = sin 2 x 2\sin x \cos x = \sin 2x )

1 + sin ( π n ) = n 4 sin ( π n ) = n 4 4 1+\sin(\frac {\pi}{n})=\frac {n}{4} \iff \sin(\frac {\pi}{n}) = \frac {n-4}{4}

sin x [ 1 , 1 ] \sin x \in [-1, 1] therefore n ( 0 , 8 ] n \in (0, 8]

Moreover left side is nonnegative because π n [ 0 , π ] \frac {\pi}{n} \in [0, \pi] therefore right side is also nonnegative so n [ 4 , 8 ] n \in [4, 8] .

For values n { 4 , 5 , 7 , 8 } n \in \{4, 5, 7, 8\} left side is irrational but left rational. For n = 6 n = 6 the equation holds true thus this is the answer.

Chew-Seong Cheong
Apr 28, 2018

sin ( π 2 n ) + cos ( π 2 n ) = n 2 Multiply both sides by 1 2 . 1 2 sin ( π 2 n ) + 1 2 cos ( π 2 n ) = 2 n 4 sin ( π 2 n + π 4 ) = 2 n 4 \begin{aligned} \sin \left(\frac \pi {2n}\right) + \cos \left(\frac \pi {2n}\right) & = \frac {\sqrt n}2 & \small \color{#3D99F6} \text{Multiply both sides by }\frac 1{\sqrt 2}. \\ \frac 1{\sqrt 2} \sin \left(\frac \pi {2n}\right) + \frac 1{\sqrt 2} \cos \left(\frac \pi {2n}\right) & = \frac {\sqrt {2n}}4 \\ \sin \left(\frac \pi {2n} + \frac \pi 4\right) & = \frac {\sqrt{2n}}4 \end{aligned}

For n 1 n \ge 1 , sin ( π 2 n + π 4 ) > sin ( π 4 ) > 1 2 \sin \left(\dfrac \pi {2n} + \dfrac \pi 4\right) > \sin \left(\dfrac \pi 4\right) > \dfrac 1{\sqrt 2} . Therefore, 1 2 < 2 n 4 1 \dfrac 1{\sqrt 2} < \dfrac {\sqrt{2n}}4 \le 1 4 < n 8 \implies 4 < n \le 8 . Only n = 6 n=\boxed{6} satisfies the equation sin ( π 2 ( 6 ) + π 4 ) = sin ( π 3 ) = 3 2 = 2 ( 6 ) 4 \sin \left(\dfrac \pi {2\color{#3D99F6}(6)} + \dfrac \pi 4\right) = \sin \left(\dfrac \pi 3 \right) = \dfrac {\sqrt 3}2 = \dfrac {\sqrt{2\color{#3D99F6}(6)}}4 .

James Wilson
Feb 9, 2018

Let x = sin π 2 n x=\sin{\frac{\pi}{2n}} . Then x + 1 x 2 = n 2 x 2 = 2 ± n 2 4 + 2 n 4 x+\sqrt{1-x^2}=\frac{\sqrt{n}}{2}\Rightarrow x^2=\frac{2\pm\sqrt{-\frac{n^2}{4}+2n}}{4} . The part under the square root has to be nonnegative, which leads to n 8 n\leq 8 . Then you could test all such n n to find n = 6 n=6 . (No other trigonometric identities necessary from this point.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...