Trigonometry! #15

Geometry Level 3

If 0 < A < π 4 0<A<\frac{\pi}{4} , then

1 + sin 2 A + 1 sin 2 A 1 + sin 2 A 1 sin 2 A = ? \large \frac {\sqrt{1+\sin 2A}+\sqrt{1-\sin 2A}}{\sqrt{1+\sin2A}-\sqrt{1-\sin 2A}}=?

This problem is part of the set Trigonometry .

tan A -\tan A cot A \cot A tan A \tan A cot A -\cot A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 23, 2018

x = 1 + sin 2 A + 1 sin 2 A 1 + sin 2 A 1 sin 2 A = 1 + sin 2 A + 1 sin 2 A 1 + sin 2 A 1 sin 2 A × 1 + sin 2 A + 1 sin 2 A 1 + sin 2 A + 1 sin 2 A = 2 + 2 ( 1 + sin 2 A ) ( 1 sin 2 A ) 2 sin 2 A = 1 + 1 sin 2 2 A sin 2 A = 1 + cos 2 A sin 2 A = 1 + 2 cos 2 A 1 2 sin A cos A = cos 2 A sin A cos A = cot A \begin{aligned} x & = \frac {\sqrt{1+\sin 2A}+\sqrt{1-\sin 2A}}{\sqrt{1+\sin 2A}-\sqrt{1-\sin 2A}} \\ & = \frac {\sqrt{1+\sin 2A}+\sqrt{1-\sin 2A}}{\sqrt{1+\sin 2A}-\sqrt{1-\sin 2A}} \times \frac {\sqrt{1+\sin 2A}+\sqrt{1-\sin 2A}}{\sqrt{1+\sin 2A}+\sqrt{1-\sin 2A}} \\ & = \frac {2+2\sqrt{(1+\sin 2A)(1-\sin 2A)}}{2\sin 2A} \\ & = \frac {1+\sqrt{1-\sin^2 2A}}{\sin 2A} \\ & = \frac {1+\cos 2A}{\sin 2A} \\ & = \frac {1+2\cos^2A-1}{2\sin A\cos A} \\ & = \frac {\cos^2A}{\sin A\cos A} \\ & = \boxed{\cot A} \end{aligned}

Omkar Kulkarni
Jan 31, 2015

Rationalise and simplify to obtain

1 + 2 cos 2 A sin 2 A \frac{1+2\cos 2A}{\sin 2A}

Using the double angle formula,

= 2 cos 2 A 2 sin A cos A = \frac {2\cos^{2} A}{2\sin A \cos A}

= cot A = \boxed{\cot A}

1 + s i n 2 A = s i n 2 A + c o s 2 A + 2 s i n A c o s A = ( s i n A + c o s A ) 2 1 + sin2A = sin^2A + cos^2A + 2sinAcosA = (sinA + cosA)^2

1 s i n 2 A = s i n 2 A + c o s 2 A 2 s i n A c o s A = ( s i n A c o s A ) 2 1 - sin2A = sin^2A + cos^2A - 2sinAcosA = (sinA - cosA)^2

Numerator = s i n A + c o s A + s i n A c o s A = 2 s i n A sinA + cosA + sinA -cosA = 2sinA

denominator = s i n A + c o s A s i n A + c o s A = 2 c o s A sinA + cosA - sinA + cosA =2cosA

the answer comes as tanA Omkar kulkarni

sandeep Rathod - 6 years, 4 months ago

Log in to reply

Numerator = sin A + cos A + sin A cos A =|\sin A+\cos A|+|\sin A-\cos A|

Note that in the second term, value in it is -ve thus it will come out as cos A sin A \cos A-\sin A . Same with denominator.

Pranjal Jain - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...