If 0 < A < 4 π , then
1 + sin 2 A − 1 − sin 2 A 1 + sin 2 A + 1 − sin 2 A = ?
This problem is part of the set Trigonometry .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Rationalise and simplify to obtain
sin 2 A 1 + 2 cos 2 A
Using the double angle formula,
= 2 sin A cos A 2 cos 2 A
= cot A
1 + s i n 2 A = s i n 2 A + c o s 2 A + 2 s i n A c o s A = ( s i n A + c o s A ) 2
1 − s i n 2 A = s i n 2 A + c o s 2 A − 2 s i n A c o s A = ( s i n A − c o s A ) 2
Numerator = s i n A + c o s A + s i n A − c o s A = 2 s i n A
denominator = s i n A + c o s A − s i n A + c o s A = 2 c o s A
the answer comes as tanA Omkar kulkarni
Log in to reply
Numerator = ∣ sin A + cos A ∣ + ∣ sin A − cos A ∣
Note that in the second term, value in it is -ve thus it will come out as cos A − sin A . Same with denominator.
Problem Loading...
Note Loading...
Set Loading...
x = 1 + sin 2 A − 1 − sin 2 A 1 + sin 2 A + 1 − sin 2 A = 1 + sin 2 A − 1 − sin 2 A 1 + sin 2 A + 1 − sin 2 A × 1 + sin 2 A + 1 − sin 2 A 1 + sin 2 A + 1 − sin 2 A = 2 sin 2 A 2 + 2 ( 1 + sin 2 A ) ( 1 − sin 2 A ) = sin 2 A 1 + 1 − sin 2 2 A = sin 2 A 1 + cos 2 A = 2 sin A cos A 1 + 2 cos 2 A − 1 = sin A cos A cos 2 A = cot A