Trigonometry #156

Geometry Level 4

Find the smallest positive number p p for which the equation cos ( p sin x ) = sin ( p cos x ) \cos(p\sin x)=\sin(p\cos x) has a solution for x [ 0 , 2 π ] x\in[0,2\pi] .

Enter the value of π 2 p 2 \frac{\pi^{2}}{p^{2}} .

This problem is part of the set Trigonometry .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Thushar Mn
Feb 28, 2015

psinx+ pcosx =pi/2 so , p=pi/2(sinx+cosx)

max value of sinx +cosx =root 2. so min value of p=pi/(2 root 2).

C o s ( p S i n X ) = S i n ( p C o s X ) = C o s ( π 2 p C o s X ) . p S i n X = π 2 p C o s X p ( S i n X + C o s X ) = π 2 . . . . ( 1 ) L e t f ( X ) = S i n X + C o s X , F o r e x t r e m e v a l u e s , f ( X ) = C o s X S i n X = 0 , , S i n X = C o s X , X = π 4 . f r o m ( 1 ) p ( S i n X + C o s X ) = p ( 1 2 + 1 2 ) = p 2 = π 2 . p = π 2 2 π 2 p 2 = 8 Cos(pSinX)=Sin(pCosX)=Cos(\dfrac \pi 2 -pCosX).\\\implies~pSinX= \dfrac \pi 2 -pCosX \\p(SinX+CosX)=\dfrac \pi 2 ....(1)\\ Let~~f(X) = SinX + CosX, ~~~~~ For~extreme ~values,\\f'(X)=CosX - SinX=0,~~\implies, SinX=CosX,~~\therefore~X= \dfrac \pi 4 .\\\therefore~from~(1)~~p(SinX+CosX)=p*(\dfrac 1 {\sqrt 2} + \dfrac 1 {\sqrt 2} )=p*\sqrt 2=\dfrac \pi 2.\\ \implies~p=\dfrac \pi {2*\sqrt 2 }~~\therefore ~\dfrac {\pi^2}{p^2}= ~~\Large \color{#D61F06}{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...