Trigonometry

Geometry Level 3

If p = tan ( 11 π / 6 ) , q = tan ( 21 π / 4 ) p=\tan(-11\pi /6) ,q=\tan(21\pi /4) and r = cot ( 283 π / 6 ) r=\cot(283\pi /6) ,then which of the following statements is/are correct?

  1. p × r = 2 p \times r = 2
  2. p,q and r are in GP.
1 only Neither 1 nor 2 Both 1 and 2 2 only

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

{ p = tan ( 11 6 π ) = tan ( \1 6 π ) = 1 3 q = tan ( 21 4 π ) = tan ( 5 1 4 π ) = tan ( 1 4 π ) = 1 r = tan ( 283 6 π ) = cot ( 47 1 6 π ) = cot ( 7 6 π ) = cot ( 1 6 π ) = 3 \begin{cases} p = \tan{\left(-\frac{11}{6} \pi \right)} = \tan{\left(\frac{\1}{6} \pi \right)} & = \frac{1}{\sqrt{3}} \\ q = \tan{\left(\frac{21}{4} \pi \right)} = \tan{\left(5\frac{1}{4} \pi \right)} = \tan{\left(\frac{1}{4} \pi \right)} & = 1 \\ r = \tan{\left(\frac{283}{6} \pi \right)} = \cot{\left(47\frac{1}{6} \pi \right)} = \cot{\left(\frac{7}{6} \pi \right)} = \cot{\left(\frac{1}{6} \pi \right)} & = \sqrt{3} \end{cases}

{ p r = 1 3 × 3 = 1 2 p r = 1 = q 2 p , q and r are in GP \begin{cases} pr = \dfrac{1}{\sqrt{3}} \times \sqrt{3} = 1 & \ne 2 \\ \Rightarrow pr = 1 = q^2 & \Rightarrow \boxed{p, q \text{ and } r \text{ are in GP}} \end{cases}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...